These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36308682)

  • 21. New mixture models for decoy-free false discovery rate estimation in mass spectrometry proteomics.
    Peng Y; Jain S; Li YF; Greguš M; Ivanov AR; Vitek O; Radivojac P
    Bioinformatics; 2020 Dec; 36(Suppl_2):i745-i753. PubMed ID: 33381824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the resolution limitations of peptide identification algorithms.
    Colaert N; Degroeve S; Helsens K; Martens L
    J Proteome Res; 2011 Dec; 10(12):5555-61. PubMed ID: 21995378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An automated proteomic data analysis workflow for mass spectrometry.
    Pendarvis K; Kumar R; Burgess SC; Nanduri B
    BMC Bioinformatics; 2009 Oct; 10 Suppl 11(Suppl 11):S17. PubMed ID: 19811682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An assessment of false discovery rates and statistical significance in label-free quantitative proteomics with combined filters.
    Li Q; Roxas BA
    BMC Bioinformatics; 2009 Feb; 10():43. PubMed ID: 19187558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets.
    Savitski MM; Wilhelm M; Hahne H; Kuster B; Bantscheff M
    Mol Cell Proteomics; 2015 Sep; 14(9):2394-404. PubMed ID: 25987413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IonQuant Enables Accurate and Sensitive Label-Free Quantification With FDR-Controlled Match-Between-Runs.
    Yu F; Haynes SE; Nesvizhskii AI
    Mol Cell Proteomics; 2021; 20():100077. PubMed ID: 33813065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general method for accurate estimation of false discovery rates in identification of differentially expressed genes.
    Tan YD; Xu H
    Bioinformatics; 2014 Jul; 30(14):2018-25. PubMed ID: 24632499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compositional knockoff filter for high-dimensional regression analysis of microbiome data.
    Srinivasan A; Xue L; Zhan X
    Biometrics; 2021 Sep; 77(3):984-995. PubMed ID: 32683674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein Probability Model for High-Throughput Protein Identification by Mass Spectrometry-Based Proteomics.
    Prieto G; Vázquez J
    J Proteome Res; 2020 Mar; 19(3):1285-1297. PubMed ID: 32037837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. False discovery rate-controlled multiple testing for union null hypotheses: a knockoff-based approach.
    Dai R; Zheng C
    Biometrics; 2023 Dec; 79(4):3497-3509. PubMed ID: 36854821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the false discovery rate with constraints: the Newman-Keuls test revisited.
    Shaffer JP
    Biom J; 2007 Feb; 49(1):136-43. PubMed ID: 17342955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Null-Test for peptide identification algorithm in Shotgun proteomics.
    Zhang SR; Shan YC; Jiang H; Liu JH; Zhou Y; Zhang LH; Zhang YK
    J Proteomics; 2017 Jun; 163():118-125. PubMed ID: 28506863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines.
    Jones AR; Siepen JA; Hubbard SJ; Paton NW
    Proteomics; 2009 Mar; 9(5):1220-9. PubMed ID: 19253293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A powerful procedure that controls the false discovery rate with directional information.
    Tian Z; Liang K; Li P
    Biometrics; 2021 Mar; 77(1):212-222. PubMed ID: 32277471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An adaptive single-step FDR procedure with applications to DNA microarray analysis.
    Iyer V; Sarkar S
    Biom J; 2007 Feb; 49(1):127-35. PubMed ID: 17342954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional target decoy strategy for shotgun proteomics.
    Bern MW; Kil YJ
    J Proteome Res; 2011 Dec; 10(12):5296-301. PubMed ID: 22010998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse and Random Decoy Methods for False Discovery Rate Estimation in High Mass Accuracy Peptide Spectral Library Searches.
    Zhang Z; Burke M; Mirokhin YA; Tchekhovskoi DV; Markey SP; Yu W; Chaerkady R; Hess S; Stein SE
    J Proteome Res; 2018 Feb; 17(2):846-857. PubMed ID: 29281288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DecoyPyrat: Fast Non-redundant Hybrid Decoy Sequence Generation for Large Scale Proteomics.
    Wright JC; Choudhary JS
    J Proteomics Bioinform; 2016 Jun; 9(6):176-180. PubMed ID: 27418748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SILIA-Based 4C Quantitative PTM Proteomics.
    Wong EOY; Li N
    Methods Mol Biol; 2021; 2358():113-135. PubMed ID: 34270050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurately Assigning Peptides to Spectra When Only a Subset of Peptides Are Relevant.
    Lin A; Plubell DL; Keich U; Noble WS
    J Proteome Res; 2021 Aug; 20(8):4153-4164. PubMed ID: 34236864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.