These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36308682)

  • 41. Novel learning framework (knockoff technique) to evaluate metric ranking algorithms to describe human response to injury.
    Banerjee A; DeVogel N; Pintar FA; Yoganandan N
    Traffic Inj Prev; 2018; 19(sup2):S121-S126. PubMed ID: 30570337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An analysis of proteogenomics and how and when transcriptome-informed reduction of protein databases can enhance eukaryotic proteomics.
    Fancello L; Burger T
    Genome Biol; 2022 Jun; 23(1):132. PubMed ID: 35725496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Empirical approach to false discovery rate estimation in shotgun proteomics.
    Goloborodko AA; Mayerhofer C; Zubarev AR; Tarasova IA; Gorshkov AV; Zubarev RA; Gorshkov MV
    Rapid Commun Mass Spectrom; 2010 Feb; 24(4):454-62. PubMed ID: 20069687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BuildSummary: using a group-based approach to improve the sensitivity of peptide/protein identification in shotgun proteomics.
    Sheng Q; Dai J; Wu Y; Tang H; Zeng R
    J Proteome Res; 2012 Mar; 11(3):1494-502. PubMed ID: 22217156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Instance based algorithm for posterior probability calculation by target-decoy strategy to improve protein identifications.
    Jiang X; Dong X; Ye M; Zou H
    Anal Chem; 2008 Dec; 80(23):9326-35. PubMed ID: 19551949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unbiased False Discovery Rate Estimation for Shotgun Proteomics Based on the Target-Decoy Approach.
    Levitsky LI; Ivanov MV; Lobas AA; Gorshkov MV
    J Proteome Res; 2017 Feb; 16(2):393-397. PubMed ID: 27959540
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bon-EV: an improved multiple testing procedure for controlling false discovery rates.
    Li D; Xie Z; Zand M; Fogg T; Dye T
    BMC Bioinformatics; 2017 Jan; 18(1):1. PubMed ID: 28049414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS.
    Katsevich E; Sabatti C
    Ann Appl Stat; 2019 Mar; 13(1):1-33. PubMed ID: 31687060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tandem Mass Spectrum Identification via Cascaded Search.
    Kertesz-Farkas A; Keich U; Noble WS
    J Proteome Res; 2015 Aug; 14(8):3027-38. PubMed ID: 26084232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics.
    Lam H; Deutsch EW; Aebersold R
    J Proteome Res; 2010 Jan; 9(1):605-10. PubMed ID: 19916561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Target-decoy approach and false discovery rate: when things may go wrong.
    Gupta N; Bandeira N; Keich U; Pevzner PA
    J Am Soc Mass Spectrom; 2011 Jul; 22(7):1111-20. PubMed ID: 21953092
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using the entrapment sequence method as a standard to evaluate key steps of proteomics data analysis process.
    Feng XD; Li LW; Zhang JH; Zhu YP; Chang C; Shu KX; Ma J
    BMC Genomics; 2017 Mar; 18(Suppl 2):143. PubMed ID: 28361671
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporating Phylogenetic Information in Microbiome Differential Abundance Studies Has No Effect on Detection Power and FDR Control.
    Bichat A; Plassais J; Ambroise C; Mariadassou M
    Front Microbiol; 2020; 11():649. PubMed ID: 32351481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bayesian variable selection using Knockoffs with applications to genomics.
    Yap JK; Gauran IIM
    Comput Stat; 2022 Sep; ():1-20. PubMed ID: 36157067
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Target-small decoy search strategy for false discovery rate estimation.
    Kim H; Lee S; Park H
    BMC Bioinformatics; 2019 Aug; 20(1):438. PubMed ID: 31443634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FastLSU: a more practical approach for the Benjamini-Hochberg FDR controlling procedure for huge-scale testing problems.
    Madar V; Batista S
    Bioinformatics; 2016 Jun; 32(11):1716-23. PubMed ID: 26826716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solution to Statistical Challenges in Proteomics Is More Statistics, Not Less.
    Serang O; Käll L
    J Proteome Res; 2015 Oct; 14(10):4099-103. PubMed ID: 26257019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Pipeline for Peptide Detection Using Multiple Decoys.
    Hasam S; Emery K; Noble WS; Keich U
    Methods Mol Biol; 2023; 2426():25-34. PubMed ID: 36308683
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of peptide identification with considering the abundance of mRNA and peptide.
    Ma C; Xu S; Liu G; Liu X; Xu X; Wen B; Liu S
    BMC Bioinformatics; 2017 Feb; 18(1):109. PubMed ID: 28201984
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ProteinInferencer: Confident protein identification and multiple experiment comparison for large scale proteomics projects.
    Zhang Y; Xu T; Shan B; Hart J; Aslanian A; Han X; Zong N; Li H; Choi H; Wang D; Acharya L; Du L; Vogt PK; Ping P; Yates JR
    J Proteomics; 2015 Nov; 129():25-32. PubMed ID: 26196237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.