These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 36308799)
1. Response of tropical seagrass palatability based on nutritional quality, chemical deterrents and physical defence to ammonium stress and its subsequent effect on herbivory. Fang Y; Jiang Z; Li L; Li J; He J; Liu S; Wu Y; Cui L; Huang X Mar Environ Res; 2022 Dec; 182():105785. PubMed ID: 36308799 [TBL] [Abstract][Full Text] [Related]
2. Effects of herbivore on seagrass, epiphyte and sediment carbon sequestration in tropical seagrass bed. Jiang Z; He J; Fang Y; Lin J; Liu S; Wu Y; Huang X Mar Environ Res; 2023 Sep; 190():106122. PubMed ID: 37549560 [TBL] [Abstract][Full Text] [Related]
3. Global and local disturbances interact to modify seagrass palatability. Jiménez-Ramos R; Egea LG; Ortega MJ; Hernández I; Vergara JJ; Brun FG PLoS One; 2017; 12(8):e0183256. PubMed ID: 28813506 [TBL] [Abstract][Full Text] [Related]
4. Specificity in Mesograzer-Induced Defences in Seagrasses. Martínez-Crego B; Arteaga P; Ueber A; Engelen AH; Santos R; Molis M PLoS One; 2015; 10(10):e0141219. PubMed ID: 26506103 [TBL] [Abstract][Full Text] [Related]
5. The Role of Seagrass Traits in Mediating Zostera noltei Vulnerability to Mesograzers. Martínez-Crego B; Arteaga P; Tomas F; Santos R PLoS One; 2016; 11(6):e0156848. PubMed ID: 27257679 [TBL] [Abstract][Full Text] [Related]
6. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549 [TBL] [Abstract][Full Text] [Related]
7. Lack of Impact of Posidonia oceanica Leaf Nutrient Enrichment on Sarpa salpa Herbivory: Additional Evidence for the Generalist Consumer Behavior of This Cornerstone Mediterranean Herbivore. Marco-Méndez C; Wessel C; Scheffel W; Ferrero-Vicente L; Fernández-Torquemada Y; Cebrián J; Heck KL; Sánchez-Lizaso JL PLoS One; 2016; 11(12):e0168398. PubMed ID: 27992498 [TBL] [Abstract][Full Text] [Related]
8. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading. Ravaglioli C; Capocchi A; Fontanini D; Mori G; Nuccio C; Bulleri F Mar Environ Res; 2018 May; 136():54-61. PubMed ID: 29519535 [TBL] [Abstract][Full Text] [Related]
9. Nutrient enrichment and herbivory alter carbon balance in temperate seagrass communities. Jiménez-Ramos R; Brun FG; Vergara JJ; Hernández I; Pérez-Lloréns JL; Egea LG Mar Pollut Bull; 2024 Sep; 206():116784. PubMed ID: 39083908 [TBL] [Abstract][Full Text] [Related]
10. Driving factors of biogeographical variation in seagrass herbivory. Martínez-Crego B; Prado P; Marco-Méndez C; Fernández-Torquemada Y; Espino F; Sánchez-Lizaso JL; de la Ossa JA; Vilella DM; Machado M; Tuya F Sci Total Environ; 2021 Mar; 758():143756. PubMed ID: 33333301 [TBL] [Abstract][Full Text] [Related]
11. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. Valentine JF; Heck KL J Exp Mar Biol Ecol; 2001 Mar; 258(1):65-86. PubMed ID: 11239626 [TBL] [Abstract][Full Text] [Related]
12. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Tomas F; Martínez-Crego B; Hernán G; Santos R Glob Chang Biol; 2015 Nov; 21(11):4021-30. PubMed ID: 26152761 [TBL] [Abstract][Full Text] [Related]
13. Patch age alters seagrass response mechanisms to herbivory damage. Jiménez-Ramos R; Egea LG; Pérez-Estrada CJ; Balart EF; Vergara JJ; Brun FG Mar Environ Res; 2024 May; 197():106443. PubMed ID: 38507985 [TBL] [Abstract][Full Text] [Related]
15. Recovery of a large herbivore changes regulation of seagrass productivity in a naturally grazed Caribbean ecosystem. Gulick AG; Johnson RA; Pollock CG; Hillis-Starr Z; Bolten AB; Bjorndal KA Ecology; 2020 Dec; 101(12):e03180. PubMed ID: 32882749 [TBL] [Abstract][Full Text] [Related]
16. Morphological and physiological responses of seagrasses (Alismatales) to grazers (Testudines: Cheloniidae) and the role of these responses as grazing patch abandonment cues. Lacey EA; Collado-Vides L; Fourqurean JW Rev Biol Trop; 2014 Dec; 62(4):1535-48. PubMed ID: 25720186 [TBL] [Abstract][Full Text] [Related]
17. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Egea LG; Jiménez-Ramos R; Vergara JJ; Hernández I; Brun FG Mar Pollut Bull; 2018 Sep; 134():14-26. PubMed ID: 29475735 [TBL] [Abstract][Full Text] [Related]
18. Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. Statton J; Gustin-Craig S; Dixon KW; Kendrick GA PLoS One; 2015; 10(10):e0137778. PubMed ID: 26465926 [TBL] [Abstract][Full Text] [Related]
19. The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery. Scott AL; York PH; Duncan C; Macreadie PI; Connolly RM; Ellis MT; Jarvis JC; Jinks KI; Marsh H; Rasheed MA Front Plant Sci; 2018; 9():127. PubMed ID: 29487606 [TBL] [Abstract][Full Text] [Related]
20. Warming intensifies the interaction between the temperate seagrass Posidonia oceanica and its dominant fish herbivore Sarpa salpa. Buñuel X; Alcoverro T; Romero J; Arthur R; Ruiz JM; Pérez M; Ontoria Y; Raventós N; Macpherson E; Torrado H; Pagès JF Mar Environ Res; 2021 Mar; 165():105237. PubMed ID: 33476979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]