BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36308871)

  • 21. Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function.
    Mohan RM; Heaton DA; Danson EJ; Krishnan SP; Cai S; Channon KM; Paterson DJ
    Circ Res; 2002 Dec; 91(12):1089-91. PubMed ID: 12480808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predominance of postsynaptic mechanism in vagal suppression of sympathetic tachycardia in the dog.
    Kimura T; Uchida W; Satoh S
    J Pharmacol Exp Ther; 1985 Dec; 235(3):793-7. PubMed ID: 3001277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway.
    Herring N; Lokale MN; Danson EJ; Heaton DA; Paterson DJ
    J Mol Cell Cardiol; 2008 Mar; 44(3):477-85. PubMed ID: 17996892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vagal control of sinoatrial rhythm: a mathematical model.
    Dokos S; Celler BG; Lovell NH
    J Theor Biol; 1996 Sep; 182(1):21-44. PubMed ID: 8917735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of vagal transmission by cardiac sympathetic nerve stimulation in the dog: possible involvement of opioid receptor.
    Koyanagawa H; Musha T; Kanda A; Kimura T; Satoh S
    J Pharmacol Exp Ther; 1989 Sep; 250(3):1092-6. PubMed ID: 2550615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NO-cGMP pathway accentuates the decrease in heart rate caused by cardiac vagal nerve stimulation.
    Sears CE; Choate JK; Paterson DJ
    J Appl Physiol (1985); 1999 Feb; 86(2):510-6. PubMed ID: 9931184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A facilitatory effect of anti-angiotensin drugs on vagal bradycardia in the pithed rat and guinea-pig.
    Rechtman M; Majewski H
    Br J Pharmacol; 1993 Sep; 110(1):289-96. PubMed ID: 8220890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.
    Ardell JL; Rajendran PS; Nier HA; KenKnight BH; Armour JA
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(10):H1740-52. PubMed ID: 26371171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice.
    Choate JK; Danson EJ; Morris JF; Paterson DJ
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2310-7. PubMed ID: 11709397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parasympathetic inhibition of sympathetic neural activity to the pancreas.
    Benthem L; Mundinger TO; Taborsky GJ
    Am J Physiol Endocrinol Metab; 2001 Feb; 280(2):E378-81. PubMed ID: 11158944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscarinic potassium channels augment dynamic and static heart rate responses to vagal stimulation.
    Mizuno M; Kamiya A; Kawada T; Miyamoto T; Shimizu S; Sugimachi M
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1564-70. PubMed ID: 17526651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subtypes of muscarinic receptor on cholinergic nerves and atrial cells of chicken and guinea-pig hearts.
    Jeck D; Lindmar R; Löffelholz K; Wanke M
    Br J Pharmacol; 1988 Feb; 93(2):357-66. PubMed ID: 3359108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raised extracellular potassium attenuates the sympathetic modulation of sino-atrial node pacemaking in the isolated guinea-pig atria.
    Choate JK; Nandhabalan M; Paterson DJ
    Exp Physiol; 2001 Jan; 86(1):19-25. PubMed ID: 11429615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of nitric oxide synthase slows heart rate recovery from cholinergic activation.
    Sears CE; Choate JK; Paterson DJ
    J Appl Physiol (1985); 1998 May; 84(5):1596-603. PubMed ID: 9572804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autonomic control of pacemaker activity in the atrioventricular junction of the dog.
    Wallick DW; Felder D; Levy MN
    Am J Physiol; 1978 Sep; 235(3):H308-13. PubMed ID: 696841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ouabain enhances release of acetylcholine in the heart evoked by unilateral vagal stimulation.
    Feinauer M; Lindmar R; Löffelholz K; Ullrich B
    Naunyn Schmiedebergs Arch Pharmacol; 1986 May; 333(1):7-12. PubMed ID: 3736685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiac sympathetic nerve stimulation does not attenuate dynamic vagal control of heart rate via alpha-adrenergic mechanism.
    Miyamoto T; Kawada T; Yanagiya Y; Inagaki M; Takaki H; Sugimachi M; Sunagawa K
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H860-5. PubMed ID: 15016630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of propofol on bronchoconstriction and bradycardia induced by vagal nerve stimulation.
    Hashiba E; Hirota K; Suzuki K; Matsuki A
    Acta Anaesthesiol Scand; 2003 Oct; 47(9):1059-63. PubMed ID: 12969095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A presynaptic excitatory M1 muscarine receptor at postganglionic cardiac noradrenergic nerve fibres that is activated by endogenous acetylcholine.
    Habermeier-Muth A; Altes U; Forsyth KM; Muscholl E
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Nov; 342(5):483-9. PubMed ID: 2090950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of preganglionic nerve evoked cholinergic contractions of the guinea pig bronchus.
    Myers AC; Undem BJ
    J Auton Nerv Syst; 1991 Sep; 35(3):175-84. PubMed ID: 1744377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.