These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 36308926)

  • 1. Deep learning with biopsy whole slide images for pretreatment prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer:A multicenter study.
    Li B; Li F; Liu Z; Xu F; Ye G; Li W; Zhang Y; Zhu T; Shao L; Chen C; Sun C; Qiu B; Bu H; Wang K; Tian J
    Breast; 2022 Dec; 66():183-190. PubMed ID: 36308926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based predictive model for pathological complete response to neoadjuvant chemotherapy in breast cancer from biopsy pathological images: a multicenter study.
    Zeng H; Qiu S; Zhuang S; Wei X; Wu J; Zhang R; Chen K; Wu Z; Zhuang Z
    Front Physiol; 2024; 15():1279982. PubMed ID: 38357498
    [No Abstract]   [Full Text] [Related]  

  • 3. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer.
    Fisher TB; Saini G; Rekha TS; Krishnamurthy J; Bhattarai S; Callagy G; Webber M; Janssen EAM; Kong J; Aneja R
    Breast Cancer Res; 2024 Jan; 26(1):12. PubMed ID: 38238771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PROACTING: predicting pathological complete response to neoadjuvant chemotherapy in breast cancer from routine diagnostic histopathology biopsies with deep learning.
    Aswolinskiy W; Munari E; Horlings HM; Mulder L; Bogina G; Sanders J; Liu YH; van den Belt-Dusebout AW; Tessier L; Balkenhol M; Stegeman M; Hoven J; Wesseling J; van der Laak J; Lips EH; Ciompi F
    Breast Cancer Res; 2023 Nov; 25(1):142. PubMed ID: 37957667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based predictive biomarker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer.
    Li F; Yang Y; Wei Y; He P; Chen J; Zheng Z; Bu H
    J Transl Med; 2021 Aug; 19(1):348. PubMed ID: 34399795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method.
    Qu YH; Zhu HT; Cao K; Li XT; Ye M; Sun YS
    Thorac Cancer; 2020 Mar; 11(3):651-658. PubMed ID: 31944571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer by Subtype Using Tumor-infiltrating Lymphocytes.
    Asano Y; Kashiwagi S; Goto W; Takada K; Takahashi K; Hatano T; Takashima T; Tomita S; Motomura H; Ohsawa M; Hirakawa K; Ohira M
    Anticancer Res; 2018 Apr; 38(4):2311-2321. PubMed ID: 29599354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer.
    Yu FH; Miao SM; Li CY; Hang J; Deng J; Ye XH; Liu Y
    Eur Radiol; 2023 Aug; 33(8):5634-5644. PubMed ID: 36976336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive value of tumor-infiltrating lymphocytes to pathological complete response in neoadjuvant treated triple-negative breast cancers.
    Ruan M; Tian T; Rao J; Xu X; Yu B; Yang W; Shui R
    Diagn Pathol; 2018 Aug; 13(1):66. PubMed ID: 30170605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers.
    Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J
    EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy.
    Denkert C; von Minckwitz G; Darb-Esfahani S; Lederer B; Heppner BI; Weber KE; Budczies J; Huober J; Klauschen F; Furlanetto J; Schmitt WD; Blohmer JU; Karn T; Pfitzner BM; Kümmel S; Engels K; Schneeweiss A; Hartmann A; Noske A; Fasching PA; Jackisch C; van Mackelenbergh M; Sinn P; Schem C; Hanusch C; Untch M; Loibl S
    Lancet Oncol; 2018 Jan; 19(1):40-50. PubMed ID: 29233559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive and prognostic value of stromal tumour-infiltrating lymphocytes before and after neoadjuvant therapy in triple negative and HER2-positive breast cancer.
    Ochi T; Bianchini G; Ando M; Nozaki F; Kobayashi D; Criscitiello C; Curigliano G; Iwamoto T; Niikura N; Takei H; Yoshida A; Takei J; Suzuki K; Yamauchi H; Hayashi N
    Eur J Cancer; 2019 Sep; 118():41-48. PubMed ID: 31302586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-infiltrating lymphocyte volume is a better predictor of neoadjuvant therapy response and overall survival in triple-negative invasive breast cancer.
    Zhang L; Wang XI; Zhang S
    Hum Pathol; 2018 Oct; 80():47-54. PubMed ID: 29883779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of stromal tumor-infiltrating lymphocytes (sTILs) on response to neoadjuvant chemotherapy in triple-negative early breast cancer in the WSG-ADAPT TN trial.
    Kolberg-Liedtke C; Feuerhake F; Garke M; Christgen M; Kates R; Grischke EM; Forstbauer H; Braun M; Warm M; Hackmann J; Uleer C; Aktas B; Schumacher C; Kuemmel S; Wuerstlein R; Graeser M; Nitz U; Kreipe H; Gluz O; Harbeck N
    Breast Cancer Res; 2022 Sep; 24(1):58. PubMed ID: 36056374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical self-attention-guided deep learning framework to predict breast cancer response to chemotherapy using pre-treatment tumor biopsies.
    Saednia K; Tran WT; Sadeghi-Naini A
    Med Phys; 2023 Dec; 50(12):7852-7864. PubMed ID: 37403567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Neoadjuvant Treatment Response in Triple-Negative Breast Cancer Using Machine Learning.
    Bhattarai S; Saini G; Li H; Seth G; Fisher TB; Janssen EAM; Kiraz U; Kong J; Aneja R
    Diagnostics (Basel); 2023 Dec; 14(1):. PubMed ID: 38201383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy.
    Choudhery S; Gomez-Cardona D; Favazza CP; Hoskin TL; Haddad TC; Goetz MP; Boughey JC
    Acad Radiol; 2022 Jan; 29 Suppl 1(Suppl 1):S145-S154. PubMed ID: 33160859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of Tumor-Infiltrating Lymphocytes and the Expression of Topoisomerase IIα in the Prediction of the Clinical Outcome of Patients with Triple-Negative Breast Cancer after Taxane-Anthracycline-Based Neoadjuvant Chemotherapy.
    Rao N; Qiu J; Wu J; Zeng H; Su F; Qiu K; Wu J; Yao H
    Chemotherapy; 2017; 62(4):246-255. PubMed ID: 28472798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive value of stromal tumor-infiltrating lymphocytes in patients with breast cancer treated with neoadjuvant chemotherapy: A meta-analysis.
    Xia G; Zhang Z; Jiang Q; Wang H; Wang J
    Medicine (Baltimore); 2024 Feb; 103(6):e36810. PubMed ID: 38335394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients.
    Hwang HW; Jung H; Hyeon J; Park YH; Ahn JS; Im YH; Nam SJ; Kim SW; Lee JE; Yu JH; Lee SK; Choi M; Cho SY; Cho EY
    Breast Cancer Res Treat; 2019 Jan; 173(2):255-266. PubMed ID: 30324273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.