These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36309103)
1. Stain-Independent Deep Learning-Based Analysis of Digital Kidney Histopathology. Bouteldja N; Hölscher DL; Klinkhammer BM; Buelow RD; Lotz J; Weiss N; Daniel C; Amann K; Boor P Am J Pathol; 2023 Jan; 193(1):73-83. PubMed ID: 36309103 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology. Bouteldja N; Klinkhammer BM; Bülow RD; Droste P; Otten SW; Freifrau von Stillfried S; Moellmann J; Sheehan SM; Korstanje R; Menzel S; Bankhead P; Mietsch M; Drummer C; Lehrke M; Kramann R; Floege J; Boor P; Merhof D J Am Soc Nephrol; 2021 Jan; 32(1):52-68. PubMed ID: 33154175 [TBL] [Abstract][Full Text] [Related]
3. Generative Adversarial Networks for Facilitating Stain-Independent Supervised and Unsupervised Segmentation: A Study on Kidney Histology. Gadermayr M; Gupta L; Appel V; Boor P; Klinkhammer BM; Merhof D IEEE Trans Med Imaging; 2019 Oct; 38(10):2293-2302. PubMed ID: 30762541 [TBL] [Abstract][Full Text] [Related]
4. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Jayapandian CP; Chen Y; Janowczyk AR; Palmer MB; Cassol CA; Sekulic M; Hodgin JB; Zee J; Hewitt SM; O'Toole J; Toro P; Sedor JR; Barisoni L; Madabhushi A; Kidney Int; 2021 Jan; 99(1):86-101. PubMed ID: 32835732 [TBL] [Abstract][Full Text] [Related]
6. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
7. Automated identification of glomeruli and synchronised review of special stains in renal biopsies by machine learning and slide registration: a cross-institutional study. Wilbur DC; Smith ML; Cornell LD; Andryushkin A; Pettus JR Histopathology; 2021 Oct; 79(4):499-508. PubMed ID: 33813779 [TBL] [Abstract][Full Text] [Related]
8. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410 [TBL] [Abstract][Full Text] [Related]
9. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets. Gherardini M; Mazomenos E; Menciassi A; Stoyanov D Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151 [TBL] [Abstract][Full Text] [Related]
11. Image generation by GAN and style transfer for agar plate image segmentation. Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902 [TBL] [Abstract][Full Text] [Related]
12. Unsupervised stain augmentation enhanced glomerular instance segmentation on pathology images. Yang F; He Q; Wang Y; Zeng S; Xu Y; Ye J; He Y; Guan T; Wang Z; Li J Int J Comput Assist Radiol Surg; 2024 Jun; ():. PubMed ID: 38848032 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based transformation of H&E stained tissues into special stains. de Haan K; Zhang Y; Zuckerman JE; Liu T; Sisk AE; Diaz MFP; Jen KY; Nobori A; Liou S; Zhang S; Riahi R; Rivenson Y; Wallace WD; Ozcan A Nat Commun; 2021 Aug; 12(1):4884. PubMed ID: 34385460 [TBL] [Abstract][Full Text] [Related]
14. Impact of imperfect annotations on CNN training and performance for instance segmentation and classification in digital pathology. Jiménez LG; Decaestecker C Comput Biol Med; 2024 Jul; 177():108586. PubMed ID: 38796882 [TBL] [Abstract][Full Text] [Related]
15. Deep learning-based glomerulus detection and classification with generative morphology augmentation in renal pathology images. Juang CF; Chuang YW; Lin GW; Chung IF; Lo YC Comput Med Imaging Graph; 2024 Jul; 115():102375. PubMed ID: 38599040 [TBL] [Abstract][Full Text] [Related]
16. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139 [TBL] [Abstract][Full Text] [Related]
17. Colour adaptive generative networks for stain normalisation of histopathology images. Cong C; Liu S; Di Ieva A; Pagnucco M; Berkovsky S; Song Y Med Image Anal; 2022 Nov; 82():102580. PubMed ID: 36113326 [TBL] [Abstract][Full Text] [Related]
18. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]
19. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Tellez D; Litjens G; Bándi P; Bulten W; Bokhorst JM; Ciompi F; van der Laak J Med Image Anal; 2019 Dec; 58():101544. PubMed ID: 31466046 [TBL] [Abstract][Full Text] [Related]
20. Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy. Berijanian M; Schaadt NS; Huang B; Lotz J; Feuerhake F; Merhof D J Pathol Inform; 2023; 14():100195. PubMed ID: 36844704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]