BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36309196)

  • 1. JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction.
    Du X; Xue Z
    J Biomed Inform; 2022 Dec; 136():104231. PubMed ID: 36309196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASCRB: Multi-view based attentional feature selection for CircRNA-binding site prediction.
    Li L; Xue Z; Du X
    Comput Biol Med; 2023 Aug; 162():107077. PubMed ID: 37290390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.
    Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network.
    Wang Z; Lei X
    Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding protein binding landscape on circular RNAs with base-resolution transformer models.
    Wu H; Liu X; Fang Y; Yang Y; Huang Y; Pan X; Shen HB
    Comput Biol Med; 2024 Mar; 171():108175. PubMed ID: 38402841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network.
    Wu H; Pan X; Yang Y; Shen HB
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRBP-HFEF: Prediction of RBP-Binding Sites on circRNAs Based on Hierarchical Feature Expansion and Fusion.
    Ma Z; Sun ZL; Liu M
    Interdiscip Sci; 2023 Sep; 15(3):465-479. PubMed ID: 37233959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network.
    Yang Y; Hou Z; Ma Z; Li X; Wong KC
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.
    Okholm TLH; Sathe S; Park SS; Kamstrup AB; Rasmussen AM; Shankar A; Chua ZM; Fristrup N; Nielsen MM; Vang S; Dyrskjøt L; Aigner S; Damgaard CK; Yeo GW; Pedersen JS
    Genome Med; 2020 Dec; 12(1):112. PubMed ID: 33287884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SSCRB: Predicting circRNA-RBP Interaction Sites Using a Sequence and Structural Feature-Based Attention Model.
    Liu L; Wei Y; Zhang Q; Zhao Q
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1762-1772. PubMed ID: 38224504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Cancer-Specific circRNA-RBP Binding Sites Based on Deep Learning.
    Wang Z; Lei X; Wu FX
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31703384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.