These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 36309530)

  • 1. Interpretable predictive model for shield attitude control performance based on XGboost and SHAP.
    Hu M; Zhang H; Wu B; Li G; Zhou L
    Sci Rep; 2022 Oct; 12(1):18226. PubMed ID: 36309530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations.
    Zou Y; Shi Y; Sun F; Liu J; Guo Y; Zhang H; Lu X; Gong Y; Xia S
    Comput Methods Programs Biomed; 2022 Oct; 225():107038. PubMed ID: 35930861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multistage model for rapid identification of geological features in shield tunnelling.
    Hu M; Lu J; Zhou W; Xu W; Wu Z
    Sci Rep; 2023 Jan; 13(1):1799. PubMed ID: 36720996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on Kartell v. Blue Shield of Massachusetts, Inc.: an antitrust analysis of Blue Shield's reimbursement schemes.
    Wayne AB
    Am J Law Med; 1986; 11(4):465-500. PubMed ID: 3591810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cause-aware failure detection using an interpretable XGBoost for optical networks.
    Zhang C; Wang D; Wang L; Guan L; Yang H; Zhang Z; Chen X; Zhang M
    Opt Express; 2021 Sep; 29(20):31974-31992. PubMed ID: 34615278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural monitoring of metro infrastructure during shield tunneling construction.
    Ran L; Ye XW; Ming G; Dong XB
    ScientificWorldJournal; 2014; 2014():784690. PubMed ID: 25032238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of face shield design on the prevention of sneeze droplet inhalation.
    Akagi F; Haraga I; Inage SI; Akiyoshi K
    Phys Fluids (1994); 2021 Mar; 33(3):037131. PubMed ID: 33897244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations.
    Dong S; Khattak A; Ullah I; Zhou J; Hussain A
    Int J Environ Res Public Health; 2022 Mar; 19(5):. PubMed ID: 35270617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP.
    Zhang G; Shi Y; Yin P; Liu F; Fang Y; Li X; Zhang Q; Zhang Z
    Front Oncol; 2022; 12():944569. PubMed ID: 35957890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the safety control framework for shield tunneling in close proximity to the operational subway tunnels: case studies in mainland China.
    Li X; Yuan D
    Springerplus; 2016; 5():527. PubMed ID: 27186491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm.
    Chen T; Wang X; Chu Y; Wang Y; Jiang M; Wei DQ; Xiong Y
    Front Microbiol; 2020; 11():580382. PubMed ID: 33072049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical prediction of the optimal shield tunneling strategy for tunnel construction in karst regions.
    Liu Z; Ming W; Li J; Zhou C; Zhang L
    PLoS One; 2021; 16(6):e0252733. PubMed ID: 34086794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Dichloroethene Concentration in the Groundwater of a Contaminated Site Using XGBoost and LSTM.
    Xia F; Jiang D; Kong L; Zhou Y; Wei J; Ding D; Chen Y; Wang G; Deng S
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal control for earth pressure balance of shield machine based on action-dependent heuristic dynamic programming.
    Liu X; Xu S; Huang Y
    ISA Trans; 2019 Nov; 94():28-35. PubMed ID: 31014545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP.
    Wang K; Tian J; Zheng C; Yang H; Ren J; Liu Y; Han Q; Zhang Y
    Comput Biol Med; 2021 Oct; 137():104813. PubMed ID: 34481185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-based radiomics XGBoost model to assess the risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual application of SHAP.
    Shi Y; Zou Y; Liu J; Wang Y; Chen Y; Sun F; Yang Z; Cui G; Zhu X; Cui X; Liu F
    Front Oncol; 2022; 12():897596. PubMed ID: 36091102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue Cross Blue Shield's troubling new direction.
    Tenery RM
    Tex Med; 1998 Jul; 94(7):45-6. PubMed ID: 9664818
    [No Abstract]   [Full Text] [Related]  

  • 19. Application of FRP Bolts in Monitoring the Internal Force of the Rocks Surrounding a Mine-Shield Tunnel.
    Liu Z; Zhou C; Lu Y; Yang X; Liang Y; Zhang L
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30135394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury.
    Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z
    Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.