These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36309580)

  • 21. Analytical solutions of electromagnetic waves in focusing and magnifying cylindrical hyperlenses: Green's function approach.
    Tapsanit P; Yamashita M; Otani C
    Opt Express; 2014 Jan; 22(1):229-38. PubMed ID: 24514983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Far-field optical hyperlens magnifying sub-diffraction-limited objects.
    Liu Z; Lee H; Xiong Y; Sun C; Zhang X
    Science; 2007 Mar; 315(5819):1686. PubMed ID: 17379801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metamaterials and imaging.
    Kim M; Rho J
    Nano Converg; 2015; 2(1):22. PubMed ID: 28191408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fingerprint Imaging System Based on Capacitive Micromachined Ultrasonic Transducer by Using Impediography Method Including Direct Touch and Waveguide Methods.
    Choi WY; Kwak YS; Park KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):402-411. PubMed ID: 30530323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Ultrasonic Tomography System for the Inspection of Columns in Architectural Heritage.
    Aparicio Secanellas S; Liébana Gallego JC; Anaya Catalán G; Martín Navarro R; Ortega Heras J; García Izquierdo MÁ; González Hernández M; Anaya Velayos JJ
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional subwavelength imaging from a hemispherical hyperlens.
    Li D; Zhang DH; Yan C; Wang Y
    Appl Opt; 2011 Nov; 50(31):G86-90. PubMed ID: 22086054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial.
    Wang W; Xing H; Fang L; Liu Y; Ma J; Lin L; Wang C; Luo X
    Opt Express; 2008 Dec; 16(25):21142-8. PubMed ID: 19065254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gain-assisted hybrid-superlens hyperlens for nano imaging.
    Wang YT; Cheng BH; Ho YZ; Lan YC; Luan PG; Tsai DP
    Opt Express; 2012 Sep; 20(20):22953-60. PubMed ID: 23037445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of optical hyperlens for imaging below the diffraction limit.
    Lee H; Liu Z; Xiong Y; Sun C; Zhang X
    Opt Express; 2007 Nov; 15(24):15886-91. PubMed ID: 19550875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials.
    Kim M; So S; Yao K; Liu Y; Rho J
    Sci Rep; 2016 Dec; 6():38645. PubMed ID: 27924937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry.
    Bisht A; He W; Wang X; Wu LY; Chen X; Li S
    Nanoscale; 2016 May; 8(20):10669-76. PubMed ID: 27149522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging.
    Chen L; Wang GP
    Opt Express; 2009 Mar; 17(5):3903-12. PubMed ID: 19259231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Flexible Ultrasonic Transducers: From Materials Optimization to Imaging Applications.
    Ren D; Yin Y; Li C; Chen R; Shi J
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters.
    Viumdal H; Mylvaganam S
    Ultrasonics; 2014 Mar; 54(3):894-904. PubMed ID: 24268177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens.
    Sun J; Litchinitser NM
    ACS Nano; 2018 Jan; 12(1):542-548. PubMed ID: 29281258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double frequency piezoelectric transducer design for harmonic imaging purposes in NDT.
    Montero de Espinosa F; Martínez O; Elvira Segura L; Gómez-Ullate L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):980-6. PubMed ID: 16118979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A super-oscillatory lens optical microscope for subwavelength imaging.
    Rogers ET; Lindberg J; Roy T; Savo S; Chad JE; Dennis MR; Zheludev NI
    Nat Mater; 2012 Mar; 11(5):432-5. PubMed ID: 22447113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation.
    Moreau L; Drinkwater BW; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1932-44. PubMed ID: 19811996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical Hyperlens: Far-field imaging beyond the diffraction limit.
    Jacob Z; Alekseyev LV; Narimanov E
    Opt Express; 2006 Sep; 14(18):8247-56. PubMed ID: 19529199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer.
    Hou C; Fei C; Li Z; Zhang S; Man J; Chen D; Wu R; Li D; Yang Y; Feng W
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):475-481. PubMed ID: 34288870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.