These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36309589)

  • 1. Quantum-noise-limited microwave amplification using a graphene Josephson junction.
    Sarkar J; Salunkhe KV; Mandal S; Ghatak S; Marchawala AH; Das I; Watanabe K; Taniguchi T; Vijay R; Deshmukh MM
    Nat Nanotechnol; 2022 Nov; 17(11):1147-1152. PubMed ID: 36309589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ballistic graphene superconducting microwave circuit.
    Schmidt FE; Jenkins MD; Watanabe K; Taniguchi T; Steele GA
    Nat Commun; 2018 Oct; 9(1):4069. PubMed ID: 30287816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gate-tunable graphene Josephson parametric amplifier.
    Butseraen G; Ranadive A; Aparicio N; Rafsanjani Amin K; Juyal A; Esposito M; Watanabe K; Taniguchi T; Roch N; Lefloch F; Renard J
    Nat Nanotechnol; 2022 Nov; 17(11):1153-1158. PubMed ID: 36280762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Josephson junction microwave amplifier in self-organized noise compression mode.
    Lähteenmäki P; Vesterinen V; Hassel J; Seppä H; Hakonen P
    Sci Rep; 2012; 2():276. PubMed ID: 22355788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier.
    Lecocq F; Ranzani L; Peterson GA; Cicak K; Simmonds RW; Teufel JD; Aumentado J
    Phys Rev Appl; 2017 Feb; 7(2):. PubMed ID: 38501125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A near-quantum-limited Josephson traveling-wave parametric amplifier.
    Macklin C; O'Brien K; Hover D; Schwartz ME; Bolkhovsky V; Zhang X; Oliver WD; Siddiqi I
    Science; 2015 Oct; 350(6258):307-10. PubMed ID: 26338795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric Amplifiers Based on Quantum Dots.
    Cochrane L; Lundberg T; Ibberson DJ; Ibberson LA; Hutin L; Bertrand B; Stelmashenko N; Robinson JWA; Vinet M; Seshia AA; Gonzalez-Zalba MF
    Phys Rev Lett; 2022 May; 128(19):197701. PubMed ID: 35622052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-preserving amplification near the quantum limit with a Josephson ring modulator.
    Bergeal N; Schackert F; Metcalfe M; Vijay R; Manucharyan VE; Frunzio L; Prober DE; Schoelkopf RJ; Girvin SM; Devoret MH
    Nature; 2010 May; 465(7294):64-8. PubMed ID: 20445625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Material Tunnel Barrier for Josephson Junctions and Superconducting Qubits.
    Lee KH; Chakram S; Kim SE; Mujid F; Ray A; Gao H; Park C; Zhong Y; Muller DA; Schuster DI; Park J
    Nano Lett; 2019 Nov; 19(11):8287-8293. PubMed ID: 31661615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave amplification with nanomechanical resonators.
    Massel F; Heikkilä TT; Pirkkalainen JM; Cho SU; Saloniemi H; Hakonen PJ; Sillanpää MA
    Nature; 2011 Dec; 480(7377):351-4. PubMed ID: 22170682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bolometer operating at the threshold for circuit quantum electrodynamics.
    Kokkoniemi R; Girard JP; Hazra D; Laitinen A; Govenius J; Lake RE; Sallinen I; Vesterinen V; Partanen M; Tan JY; Chan KW; Tan KY; Hakonen P; Möttönen M
    Nature; 2020 Oct; 586(7827):47-51. PubMed ID: 32999484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based Josephson junction microwave bolometer.
    Lee GH; Efetov DK; Jung W; Ranzani L; Walsh ED; Ohki TA; Taniguchi T; Watanabe K; Kim P; Englund D; Fong KC
    Nature; 2020 Oct; 586(7827):42-46. PubMed ID: 32999482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits.
    Schmitt TW; Connolly MR; Schleenvoigt M; Liu C; Kennedy O; Chávez-Garcia JM; Jalil AR; Bennemann B; Trellenkamp S; Lentz F; Neumann E; Lindström T; de Graaf SE; Berenschot E; Tas N; Mussler G; Petersson KD; Grützmacher D; Schüffelgen P
    Nano Lett; 2022 Apr; 22(7):2595-2602. PubMed ID: 35235321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current-Phase Relation of Ballistic Graphene Josephson Junctions.
    Nanda G; Aguilera-Servin JL; Rakyta P; Kormányos A; Kleiner R; Koelle D; Watanabe K; Taniguchi T; Vandersypen LMK; Goswami S
    Nano Lett; 2017 Jun; 17(6):3396-3401. PubMed ID: 28474892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact SQUID Realized in a Double-Layer Graphene Heterostructure.
    Indolese DI; Karnatak P; Kononov A; Delagrange R; Haller R; Wang L; Makk P; Watanabe K; Taniguchi T; Schönenberger C
    Nano Lett; 2020 Oct; 20(10):7129-7135. PubMed ID: 32872789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures.
    Wang JI; Rodan-Legrain D; Bretheau L; Campbell DL; Kannan B; Kim D; Kjaergaard M; Krantz P; Samach GO; Yan F; Yoder JL; Watanabe K; Taniguchi T; Orlando TP; Gustavsson S; Jarillo-Herrero P; Oliver WD
    Nat Nanotechnol; 2019 Feb; 14(2):120-125. PubMed ID: 30598526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator.
    Idzuchi H; Pientka F; Huang KF; Harada K; Gül Ö; Shin YJ; Nguyen LT; Jo NH; Shindo D; Cava RJ; Canfield PC; Kim P
    Nat Commun; 2021 Sep; 12(1):5332. PubMed ID: 34504077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit.
    Roch N; Flurin E; Nguyen F; Morfin P; Campagne-Ibarcq P; Devoret MH; Huard B
    Phys Rev Lett; 2012 Apr; 108(14):147701. PubMed ID: 22540823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric Dipole Coupling of a Bilayer Graphene Quantum Dot to a High-Impedance Microwave Resonator.
    Ruckriegel MJ; Gächter LM; Kealhofer D; Bahrami Panah M; Tong C; Adam C; Masseroni M; Duprez H; Garreis R; Watanabe K; Taniguchi T; Wallraff A; Ihn T; Ensslin K; Huang WW
    Nano Lett; 2024 Jun; 24(24):7508-14. PubMed ID: 38833415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making high-quality quantum microwave devices with van der Waals superconductors.
    Antony A; Gustafsson MV; Rajendran A; Benyamini A; Ribeill G; Ohki TA; Hone J; Fong KC
    J Phys Condens Matter; 2021 Dec; 34(10):. PubMed ID: 34847535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.