BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36309625)

  • 1. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops.
    Singh J; Garai S; Das S; Thakur JK; Tripathy BC
    Photosynth Res; 2022 Dec; 154(3):233-258. PubMed ID: 36309625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoded C
    Chen S; Peng W; Ansah EO; Xiong F; Wu Y
    Plant Signal Behav; 2022 Dec; 17(1):2115634. PubMed ID: 36102341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit.
    Zhang X; Pu P; Tang Y; Zhang L; Lv J
    Plant Physiol Biochem; 2019 Sep; 142():163-172. PubMed ID: 31299598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.
    Pinto H; Sharwood RE; Tissue DT; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3669-81. PubMed ID: 24723409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species.
    Bräutigam A; Schliesky S; Külahoglu C; Osborne CP; Weber AP
    J Exp Bot; 2014 Jul; 65(13):3579-93. PubMed ID: 24642845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses.
    Sonawane BV; Sharwood RE; Whitney S; Ghannoum O
    J Exp Bot; 2018 May; 69(12):3053-3068. PubMed ID: 29659931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Identification and Analysis of Biotic and Abiotic Stress Regulation of C
    Muthusamy SK; Lenka SK; Katiyar A; Chinnusamy V; Singh AK; Bansal KC
    Appl Biochem Biotechnol; 2019 Jan; 187(1):221-238. PubMed ID: 29915917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Diversity of C
    Tao Y; George-Jaeggli B; Bouteillé-Pallas M; Tai S; Cruickshank A; Jordan D; Mace E
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32708598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice.
    Taniguchi Y; Ohkawa H; Masumoto C; Fukuda T; Tamai T; Lee K; Sudoh S; Tsuchida H; Sasaki H; Fukayama H; Miyao M
    J Exp Bot; 2008; 59(7):1799-809. PubMed ID: 18316317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation responses in C4 photosynthesis of maize under salinity.
    Omoto E; Taniguchi M; Miyake H
    J Plant Physiol; 2012 Mar; 169(5):469-77. PubMed ID: 22209164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress.
    Doubnerová Hýsková V; Miedzińska L; Dobrá J; Vankova R; Ryšlavá H
    J Plant Physiol; 2014 Mar; 171(5):19-25. PubMed ID: 24484954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphophysiological alterations in transgenic rice lines expressing PPDK and ME genes from the C4 model Setaria italica.
    Swain A; Behera D; Karmakar S; Dash M; Dash BP; Swain P; Molla KA; Baig MJ
    J Plant Physiol; 2021 Sep; 264():153482. PubMed ID: 34330009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation responses in C
    Wang J; Gao H; Guo Z; Meng Y; Yang M; Li X; Yang Q
    Ecotoxicol Environ Saf; 2021 May; 214():112096. PubMed ID: 33647854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat.
    Zhang H; Xu W; Wang H; Hu L; Li Y; Qi X; Zhang L; Li C; Hua X
    Protoplasma; 2014 Sep; 251(5):1163-73. PubMed ID: 24595619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis.
    Wang Y; Bräutigam A; Weber AP; Zhu XG
    J Exp Bot; 2014 Jul; 65(13):3567-78. PubMed ID: 24609651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Installation of C
    Ermakova M; Arrivault S; Giuliani R; Danila F; Alonso-Cantabrana H; Vlad D; Ishihara H; Feil R; Guenther M; Borghi GL; Covshoff S; Ludwig M; Cousins AB; Langdale JA; Kelly S; Lunn JE; Stitt M; von Caemmerer S; Furbank RT
    Plant Biotechnol J; 2021 Mar; 19(3):575-588. PubMed ID: 33016576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What can enzymes of C₄ photosynthesis do for C₃ plants under stress?
    Doubnerová V; Ryšlavá H
    Plant Sci; 2011 Apr; 180(4):575-83. PubMed ID: 21421406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes.
    Carmo-Silva AE; Bernardes da Silva A; Keys AJ; Parry MA; Arrabaça MC
    Photosynth Res; 2008 Sep; 97(3):223-33. PubMed ID: 18629606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique photosynthetic phenotypes in Portulaca (Portulacaceae): C3-C4 intermediates and NAD-ME C4 species with Pilosoid-type Kranz anatomy.
    Voznesenskaya EV; Koteyeva NK; Edwards GE; Ocampo G
    J Exp Bot; 2017 Jan; 68(2):225-239. PubMed ID: 27986845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.