These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36310031)
1. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward. Sakloth F; Sanchez-Reyes OB; Ruiz A; Nicolais A; Serafini RA; Pryce KD; Bertherat F; Torres-Berrío A; Gomes I; Devi LA; Wacker D; Zachariou V Mol Pharmacol; 2023 Jan; 103(1):1-8. PubMed ID: 36310031 [TBL] [Abstract][Full Text] [Related]
2. Suppression of RGSz1 function optimizes the actions of opioid analgesics by mechanisms that involve the Wnt/β-catenin pathway. Gaspari S; Purushothaman I; Cogliani V; Sakloth F; Neve RL; Howland D; Ring RH; Ross EM; Shen L; Zachariou V Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2085-E2094. PubMed ID: 29440403 [TBL] [Abstract][Full Text] [Related]
3. Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Garzón J; Rodríguez-Muñoz M; Sánchez-Blázquez P Neuropharmacology; 2005 May; 48(6):853-68. PubMed ID: 15829256 [TBL] [Abstract][Full Text] [Related]
4. The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Garzón J; Rodríguez-Muñoz M; López-Fando A; Sánchez-Blázquez P Neuropsychopharmacology; 2005 Sep; 30(9):1632-48. PubMed ID: 15827571 [TBL] [Abstract][Full Text] [Related]
5. Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Rodríguez-Muñoz M; Bermúdez D; Sánchez-Blázquez P; Garzón J Neuropsychopharmacology; 2007 Apr; 32(4):842-50. PubMed ID: 16900103 [TBL] [Abstract][Full Text] [Related]
6. Suppression of the morphine-induced rewarding effect and G-protein activation in the lower midbrain following nerve injury in the mouse: involvement of G-protein-coupled receptor kinase 2. Ozaki S; Narita M; Narita M; Iino M; Miyoshi K; Suzuki T Neuroscience; 2003; 116(1):89-97. PubMed ID: 12535942 [TBL] [Abstract][Full Text] [Related]
7. RGSZ1 and GAIP regulate mu- but not delta-opioid receptors in mouse CNS: role in tachyphylaxis and acute tolerance. Garzón J; Rodríguez-Muñoz M; López-Fando A; García-España A; Sánchez-Blázquez P Neuropsychopharmacology; 2004 Jun; 29(6):1091-104. PubMed ID: 14997173 [TBL] [Abstract][Full Text] [Related]
8. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons. Connor M; Bagley EE; Chieng BC; Christie MJ Br J Pharmacol; 2015 Jan; 172(2):492-500. PubMed ID: 24597632 [TBL] [Abstract][Full Text] [Related]
9. Change in functional selectivity of morphine with the development of antinociceptive tolerance. Macey TA; Bobeck EN; Suchland KL; Morgan MM; Ingram SL Br J Pharmacol; 2015 Jan; 172(2):549-61. PubMed ID: 24666417 [TBL] [Abstract][Full Text] [Related]
10. Positive allosteric modulation of the cannabinoid type-1 receptor (CB1R) in periaqueductal gray (PAG) antagonizes anti-nociceptive and cellular effects of a mu-opioid receptor agonist in morphine-withdrawn rats. Datta U; Kelley LK; Middleton JW; Gilpin NW Psychopharmacology (Berl); 2020 Dec; 237(12):3729-3739. PubMed ID: 32857187 [TBL] [Abstract][Full Text] [Related]
11. Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons. Fyfe LW; Cleary DR; Macey TA; Morgan MM; Ingram SL J Pharmacol Exp Ther; 2010 Dec; 335(3):674-80. PubMed ID: 20739455 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanism of changes in the morphine-induced pharmacological actions under chronic pain-like state: suppression of dopaminergic transmission in the brain. Narita M; Suzuki M; Imai S; Narita M; Ozaki S; Kishimoto Y; Oe K; Yajima Y; Yamazaki M; Suzuki T Life Sci; 2004 Apr; 74(21):2655-73. PubMed ID: 15041447 [TBL] [Abstract][Full Text] [Related]
13. YTHDF1 in periaqueductal gray inhibitory neurons contributes to morphine withdrawal responses in mice. Ou C; Zhang K; Mu Y; Huang Z; Li X; Huang W; Wang Y; Zeng W; Ouyang H BMC Med; 2024 Sep; 22(1):406. PubMed ID: 39304892 [TBL] [Abstract][Full Text] [Related]
14. Opioid-Induced GABA potentiation after chronic morphine attenuates the rewarding effects of opioids in the ventral tegmental area. Madhavan A; Bonci A; Whistler JL J Neurosci; 2010 Oct; 30(42):14029-35. PubMed ID: 20962224 [TBL] [Abstract][Full Text] [Related]
15. Potentiation of the excitatory action of NMDA in ventrolateral periaqueductal gray by the mu-opioid receptor agonist, DAMGO. Kow LM; Commons KG; Ogawa S; Pfaff DW Brain Res; 2002 May; 935(1-2):87-102. PubMed ID: 12062477 [TBL] [Abstract][Full Text] [Related]
16. Repeated morphine treatment alters cannabinoid modulation of GABAergic synaptic transmission within the rat periaqueductal grey. Wilson-Poe AR; Lau BK; Vaughan CW Br J Pharmacol; 2015 Jan; 172(2):681-90. PubMed ID: 24916363 [TBL] [Abstract][Full Text] [Related]
17. Nicotinic modulation of descending pain control circuitry. Umana IC; Daniele CA; Miller BA; Abburi C; Gallagher K; Brown MA; Mason P; McGehee DS Pain; 2017 Oct; 158(10):1938-1950. PubMed ID: 28817416 [TBL] [Abstract][Full Text] [Related]
18. RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling. Ajit SK; Ramineni S; Edris W; Hunt RA; Hum WT; Hepler JR; Young KH Cell Signal; 2007 Apr; 19(4):723-30. PubMed ID: 17126529 [TBL] [Abstract][Full Text] [Related]
19. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Rodríguez-Muñoz M; de la Torre-Madrid E; Gaitán G; Sánchez-Blázquez P; Garzón J Cell Signal; 2007 Dec; 19(12):2558-71. PubMed ID: 17825524 [TBL] [Abstract][Full Text] [Related]
20. Role of extracellular signal-regulated kinase in the ventral tegmental area in the suppression of the morphine-induced rewarding effect in mice with sciatic nerve ligation. Ozaki S; Narita M; Narita M; Ozaki M; Khotib J; Suzuki T J Neurochem; 2004 Mar; 88(6):1389-97. PubMed ID: 15009639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]