These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 36310423)

  • 1. Ecomorphology of the cervid intermediate phalanx and its implications for palaeoenvironmental reconstruction.
    Gruwier BJ; Kovarovic K
    J Morphol; 2023 Jan; 284(1):e21528. PubMed ID: 36310423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecomorphology of the cervid calcaneus as a proxy for paleoenvironmental reconstruction.
    Gruwier BJ; Kovarovic K
    Anat Rec (Hoboken); 2022 Sep; 305(9):2207-2226. PubMed ID: 34837351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Eucladoceros ecomorphology using geometric morphometrics.
    Curran SC
    Anat Rec (Hoboken); 2015 Jan; 298(1):291-313. PubMed ID: 25338504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual brain endocast of Antifer (Mammalia: Cervidae), an extinct large cervid from South America.
    Fontoura E; Ferreira JD; Bubadué J; Ribeiro AM; Kerber L
    J Morphol; 2020 Oct; 281(10):1223-1240. PubMed ID: 32815595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correspondence between proximal phalanx morphology and locomotion: implications for inferring the locomotor behavior of fossil catarrhines.
    Rein TR
    Am J Phys Anthropol; 2011 Nov; 146(3):435-45. PubMed ID: 21953545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional associations between support use and forelimb shape in strepsirrhines and their relevance to inferring locomotor behavior in early primates.
    Fabre AC; Marigó J; Granatosky MC; Schmitt D
    J Hum Evol; 2017 Jul; 108():11-30. PubMed ID: 28622924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phalanx morphology in salamanders: A reflection of microhabitat use, life cycle or evolutionary constraints?
    Ponssa ML; Fratani J; Barrionuevo JS
    Zoology (Jena); 2022 Oct; 154():126040. PubMed ID: 35970064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecomorphology and phylogenetic risk: Implications for habitat reconstruction using fossil bovids.
    Scott RS; Barr WA
    J Hum Evol; 2014 Aug; 73():47-57. PubMed ID: 25038957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecomorphology of the tarsometatarsus of waterfowl (Anseriformes) based on geometric morphometrics and its application to fossils.
    De Mendoza RS; Gómez RO
    Anat Rec (Hoboken); 2022 Nov; 305(11):3243-3253. PubMed ID: 35132811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femoral specializations to locomotor habits in early archosauriforms.
    Pintore R; Houssaye A; Nesbitt SJ; Hutchinson JR
    J Anat; 2022 May; 240(5):867-892. PubMed ID: 34841511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology.
    Püschel TA; Marcé-Nogué J; Gladman JT; Bobe R; Sellers WI
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phalangeal morphology of the paromomyidae (?primates, plesiadapiformes): the evidence for gliding behavior reconsidered.
    Hamrick MW; Rosenman BA; Brush JA
    Am J Phys Anthropol; 1999 Jul; 109(3):397-413. PubMed ID: 10407467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular diversification of the locomotor system in damselfishes (Pomacentridae).
    Aguilar-Medrano R; Frédérich B; Barber PH
    J Morphol; 2016 May; 277(5):603-14. PubMed ID: 26919129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional geometric morphometric analyses of humerus ecomorphology: New perspectives for paleohabitat reconstruction in carnivorans and ungulates.
    Serio C; Brown RP; Clauss M; Meloro C
    Anat Rec (Hoboken); 2024 Aug; ():. PubMed ID: 39126145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The petrosal bone and bony labyrinth of early to middle Miocene European deer (Mammalia, Cervidae) reveal their phylogeny.
    Mennecart B; Rössner GE; Métais G; DeMiguel D; Schulz G; Müller B; Costeur L
    J Morphol; 2016 Oct; 277(10):1329-38. PubMed ID: 27460747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A resampling approach and implications for estimating the phalangeal index from unassociated hand bones in fossil primates.
    Venkataraman VV; Rolian C; Gordon AD; Patel BA
    Am J Phys Anthropol; 2013 Jun; 151(2):280-9. PubMed ID: 23633100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlates between calcaneal morphology and locomotion in extant and extinct carnivorous mammals.
    Panciroli E; Janis C; Stockdale M; Martín-Serra A
    J Morphol; 2017 Oct; 278(10):1333-1353. PubMed ID: 28603865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth in fossil and extant deer and implications for body size and life history evolution.
    Kolb C; Scheyer TM; Lister AM; Azorit C; de Vos J; Schlingemann MA; Rössner GE; Monaghan NT; Sánchez-Villagra MR
    BMC Evol Biol; 2015 Feb; 15():19. PubMed ID: 25887855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional differences in cortical bone organization and microdamage prevalence in Rocky Mountain mule deer.
    Skedros JG; Sybrowsky CL; Parry TR; Bloebaum RD
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Sep; 274(1):837-50. PubMed ID: 12923894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A geometric morphometric analysis of acetabular shape of the primate hip joint in relation to locomotor behaviour.
    San Millán M; Kaliontzopoulou A; Rissech C; Turbón D
    J Hum Evol; 2015 Jun; 83():15-27. PubMed ID: 25929707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.