These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36310628)

  • 1. Online recorded data-based finite-time composite neural trajectory tracking control for underactuated MSVs.
    Zhao C; Yan H; Gao D
    Front Neurorobot; 2022; 16():1029914. PubMed ID: 36310628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite learning tracking control for underactuated marine surface vessels with output constraints.
    Yan H; Xiao Y; Zhang H
    PeerJ Comput Sci; 2022; 8():e863. PubMed ID: 35494788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event trigger based adaptive neural trajectory tracking finite time control for underactuated unmanned marine surface vessels with asymmetric input saturation.
    Hu Y; Zhang Q; Liu Y; Meng X
    Sci Rep; 2023 Jun; 13(1):10126. PubMed ID: 37349350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties.
    Zhang J; Yu S; Yan Y
    ISA Trans; 2019 Oct; 93():145-155. PubMed ID: 30879866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-Time Command-Filtered Composite Adaptive Neural Control of Uncertain Nonlinear Systems.
    Sun J; He H; Yi J; Pu Z
    IEEE Trans Cybern; 2022 Jul; 52(7):6809-6821. PubMed ID: 33301412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Command-Filtered Robust Adaptive NN Control With the Prescribed Performance for the 3-D Trajectory Tracking of Underactuated AUVs.
    Li J; Du J; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6545-6557. PubMed ID: 34057897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Fixed-Time H∞ Trajectory Tracking Control for Marine Surface Vessels Based on a Self-Structuring Neural Network.
    Tian X; Wang Z; Yuan J; Liu H
    Comput Intell Neurosci; 2022; 2022():6515773. PubMed ID: 35845876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Recorded Data-Based Composite Neural Control of Strict-Feedback Systems With Application to Hypersonic Flight Dynamics.
    Xu B; Yang D; Shi Z; Pan Y; Chen B; Sun F
    IEEE Trans Neural Netw Learn Syst; 2018 Aug; 29(8):3839-3849. PubMed ID: 28952951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Adaptive Self-Structuring Neural Network Bounded Target Tracking Control of Underactuated Surface Vessels.
    Liu H; Lin J; Yu G; Yuan J
    Comput Intell Neurosci; 2021; 2021():2010493. PubMed ID: 34970308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Neuro-Optimal Control of Underactuated Snake Robots With Experience Replay.
    Cao Z; Xiao Q; Huang R; Zhou M
    IEEE Trans Neural Netw Learn Syst; 2018 Jan; 29(1):208-217. PubMed ID: 29300697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Learning Control of Switched Strict-Feedback Nonlinear Systems With Dead Zone Using NN and DOB.
    Cheng Y; Xu B; Lian Z; Shi Z; Shi P
    IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2503-2512. PubMed ID: 34495844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved adaptive integral line-of-sight guidance law and adaptive fuzzy path following control for underactuated MSV.
    Nie J; Lin X
    ISA Trans; 2019 Nov; 94():151-163. PubMed ID: 31053360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid finite-time trajectory tracking control of a quadrotor.
    Wang N; Deng Q; Xie G; Pan X
    ISA Trans; 2019 Jul; 90():278-286. PubMed ID: 30736957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal Sliding Mode Control of MEMS Gyroscopes With Finite-Time Learning.
    Guo Y; Xu B; Zhang R
    IEEE Trans Neural Netw Learn Syst; 2021 Oct; 32(10):4490-4498. PubMed ID: 32941157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Control of Uncertain Nonlinear Systems via Event-Triggered Communication and NN Learning.
    Liu X; Xu B; Cheng Y; Wang H; Chen W
    IEEE Trans Cybern; 2023 Apr; 53(4):2391-2401. PubMed ID: 34731083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Neural Control of Underactuated Surface Vessels With Prescribed Performance Guarantees.
    Dai SL; He S; Wang M; Yuan C
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3686-3698. PubMed ID: 30418926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-Based Event-Triggered Tracking Control of Underactuated Surface Vessels With Minimum Learning Parameters.
    Deng Y; Zhang X; Im N; Zhang G; Zhang Q
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4001-4014. PubMed ID: 31765321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-Horizon $H_{\infty }$ Tracking Control for Unknown Nonlinear Systems With Saturating Actuators.
    Zhang H; Cui X; Luo Y; Jiang H
    IEEE Trans Neural Netw Learn Syst; 2018 Apr; 29(4):1200-1212. PubMed ID: 28362620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs.
    Meng X; Zhang G; Zhang Q
    Math Biosci Eng; 2023 Jan; 20(2):2131-2156. PubMed ID: 36899526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach.
    Xu D; Zhao D; Yi J; Tan X
    IEEE Trans Syst Man Cybern B Cybern; 2009 Jun; 39(3):788-99. PubMed ID: 19336336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.