These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36311069)

  • 1. Establishment of a stable, effective and universal genetic transformation technique in the diverse species of
    Sheng X; Yu H; Wang J; Shen Y; Gu H
    Front Plant Sci; 2022; 13():1021669. PubMed ID: 36311069
    [No Abstract]   [Full Text] [Related]  

  • 2. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.
    Kumar P; Srivastava DK
    Physiol Mol Biol Plants; 2015 Apr; 21(2):279-85. PubMed ID: 25964720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.
    Ravanfar SA; Aziz MA; Saud HM; Abdullah JO
    Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly efficient genetic transformation system for broccoli and subcellular localization.
    Zhao Y; Yang D; Liu Y; Han F; Li Z
    Front Plant Sci; 2023; 14():1091588. PubMed ID: 36937998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata).
    Metz TD; Dixit R; Earle ED
    Plant Cell Rep; 1995 Dec; 15(3-4):287-92. PubMed ID: 24185794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea.
    Bhalla PL; Singh MB
    Nat Protoc; 2008; 3(2):181-9. PubMed ID: 18274519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput Agrobacterium-mediated transformation.
    Sparrow PA; Dale PJ; Irwin JA
    Plant Cell Rep; 2004 Aug; 23(1-2):64-70. PubMed ID: 15197481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new chromosome-scale genome of wild Brassica oleracea provides insights into the domestication of Brassica crops.
    Ji G; Long Y; Cai G; Wang A; Yan G; Li H; Gao G; Xu K; Huang Q; Chen B; Li L; Li F; Nishio T; Shen J; Wu X
    J Exp Bot; 2024 May; 75(10):2882-2899. PubMed ID: 38421062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants.
    De Block M; De Brouwer D; Tenning P
    Plant Physiol; 1989 Oct; 91(2):694-701. PubMed ID: 16667089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brassica oleracea.
    Sparrow PA; Dale PJ; Irwin JA
    Methods Mol Biol; 2006; 343():417-26. PubMed ID: 16988364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient
    Sandhya D; Jogam P; Venkatapuram AK; Savitikadi P; Peddaboina V; Allini VR; Abbagani S
    Saudi J Biol Sci; 2022 Jun; 29(6):103292. PubMed ID: 35540178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotype-Independent Transformation and Genome Editing of
    Cao Chu U; Kumar S; Sigmund A; Johnson K; Li Y; Vongdeuane P; Jones TJ
    Front Plant Sci; 2020; 11():579524. PubMed ID: 33133118
    [No Abstract]   [Full Text] [Related]  

  • 13. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification.
    Guo N; Wang S; Gao L; Liu Y; Wang X; Lai E; Duan M; Wang G; Li J; Yang M; Zong M; Han S; Pei Y; Borm T; Sun H; Miao L; Liu D; Yu F; Zhang W; Ji H; Zhu C; Xu Y; Bonnema G; Li J; Fei Z; Liu F
    BMC Biol; 2021 May; 19(1):93. PubMed ID: 33952264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agrobacterium-mediated genetic transformation of oilseed Brassica campestris: Transformation frequency is strongly influenced by the mode of shoot regeneration.
    Mukhopadhyay A; Arumugam N; Nandakumar PB; Pradhan AK; Gupta V; Pental D
    Plant Cell Rep; 1992 Sep; 11(10):506-13. PubMed ID: 24213158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brassica oleracea and B. napus.
    Sparrow PA; Irwin JA
    Methods Mol Biol; 2015; 1223():287-97. PubMed ID: 25300849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficiency transformation of Brassica oleracea var. botrytis plants by Rhizobium rhizogenes.
    Kowalczyk T; Gerszberg A; Durańska P; Biłas R; Hnatuszko-Konka K
    AMB Express; 2018 Aug; 8(1):125. PubMed ID: 30083848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of transgenic vegetable brassicas (Brassica oleracea andB. campestris) via Ri-mediated transformation.
    Christey MC; Sinclair BK; Braun RH; Wyke L
    Plant Cell Rep; 1997 Jun; 16(9):587-593. PubMed ID: 30727601
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Gerszberg A; Hnatuszko-Konka K; Kowalczyk T
    In Vitro Cell Dev Biol Plant; 2015; 51(1):80-87. PubMed ID: 25774081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.
    Kumar P; Srivastava DK
    Biotechnol Lett; 2016 Apr; 38(4):561-71. PubMed ID: 26721234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea.
    Sparrow PA; Townsend TM; Morgan CL; Dale PJ; Arthur AE; Irwin JA
    Theor Appl Genet; 2004 May; 108(7):1249-55. PubMed ID: 14663558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.