These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36311163)

  • 1. New soliton molecules to couple of nonlinear models: ion sound and Langmuir waves systems.
    Rizvi STR; Seadawy AR; Abbas SO; Naz K
    Opt Quantum Electron; 2022; 54(12):852. PubMed ID: 36311163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the unified method to solve the ion sound and Langmuir waves model.
    Nandi DC; Ullah MS; Roshid HO; Zulfikar Ali M
    Heliyon; 2022 Oct; 8(10):e10924. PubMed ID: 36267371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explicit and exact travelling wave solutions for Hirota equation and computerized mechanization.
    Li B; Wang F; Nadeem S
    PLoS One; 2024; 19(5):e0303982. PubMed ID: 38771741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing chaos and superposition of lump waves with other waves in the time-fractional coupled nonlinear schördinger equation.
    Majid SZ; Asjad MI; Riaz MB; Muhammad T
    PLoS One; 2024; 19(8):e0304334. PubMed ID: 39196950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solitary wave solutions of the time fractional Benjamin Bona Mahony Burger equation.
    Pavani K; Raghavendar K; Aruna K
    Sci Rep; 2024 Jun; 14(1):14596. PubMed ID: 38918464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation and interaction between special fractional soliton and soliton molecules in the inhomogeneous fiber.
    Wu GZ; Dai CQ; Wang YY; Chen YX
    J Adv Res; 2022 Feb; 36():63-71. PubMed ID: 35127165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical exploration of optical soliton solutions for M-fractional Paraxial wave equation.
    Bashar MH; Ghosh S; Rahman MM
    PLoS One; 2024; 19(2):e0299573. PubMed ID: 38421986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion.
    Younas U; Bilal M; Ren J
    Opt Quantum Electron; 2021; 53(9):490. PubMed ID: 34413567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of multi-wave solitary solutions of (2+1)-dimensional coupled system of Boiti-Leon-Pempinelli.
    Ghazanfar S; Ahmed N; Iqbal MS; Ali SM; Akgül A; Muhammad S; Ali M; Hassani MK
    Sci Rep; 2024 Aug; 14(1):20234. PubMed ID: 39215034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On soliton solutions, periodic wave solutions and asymptotic analysis to the nonlinear evolution equations in (2+1) and (3+1) dimensions.
    Guo B; Fang Y; Dong H
    Heliyon; 2023 May; 9(5):e15929. PubMed ID: 37215890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations.
    Vitanov NK
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring optical solitary wave solutions in the (2+1)-dimensional equation with in-depth of dynamical assessment.
    Ashaq H; Majid SZ; Riaz MB; Asjad MI; Muhammad T
    Heliyon; 2024 Jun; 10(12):e32826. PubMed ID: 39022012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A variety of soliton solutions of time M-fractional: Non-linear models via a unified technique.
    Roshid MM; Rahman MM; Roshid HO; Bashar MH
    PLoS One; 2024; 19(4):e0300321. PubMed ID: 38669251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the soliton propagation of the fractional nonlinear type evolution equation through a novel technique.
    Zaman UHM; Arefin MA; Akbar MA; Uddin MH
    PLoS One; 2023; 18(5):e0285178. PubMed ID: 37216390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.
    Roshid HO; Kabir MR; Bhowmik RC; Datta BK
    Springerplus; 2014; 3():692. PubMed ID: 26034687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel waves structures for the nonclassical Sobolev-type equation in unipolar semiconductor with its stability analysis.
    Shahzad T; Ahmed MO; Baber MZ; Ahmed N; Akgül A; Din SME
    Sci Rep; 2023 Dec; 13(1):22452. PubMed ID: 38105278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the wave dynamics of the space-time fractional nonlinear evolution equations of beta derivative using the improved Bernoulli sub-equation function approach.
    Podder A; Arefin MA; Akbar MA; Uddin MH
    Sci Rep; 2023 Nov; 13(1):20478. PubMed ID: 37993529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation.
    Zhang M; Xie X; Manafian J; Ilhan OA; Singh G
    J Adv Res; 2022 May; 38():131-142. PubMed ID: 35572408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breather wave solutions on the Weierstrass elliptic periodic background for the (2 + 1)-dimensional generalized variable-coefficient KdV equation.
    Li J; Yang Y; Sun W
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38416673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2+1)-D Calogero-Bogoyavlenskii-Schiff equation.
    Roshid HO; Khan MH; Wazwaz AM
    Heliyon; 2020 Apr; 6(4):e03701. PubMed ID: 32322710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.