These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36311222)
1. Development of machine learning models integrating PET/CT radiomic and immunohistochemical pathomic features for treatment strategy choice of cervical cancer with negative pelvic lymph node by mediating COX-2 expression. Zhang Z; Li X; Sun H Front Physiol; 2022; 13():994304. PubMed ID: 36311222 [No Abstract] [Full Text] [Related]
2. PET-CT radiomics by integrating primary tumor and peritumoral areas predicts E-cadherin expression and correlates with pelvic lymph node metastasis in early-stage cervical cancer. Li XR; Jin JJ; Yu Y; Wang XH; Guo Y; Sun HZ Eur Radiol; 2021 Aug; 31(8):5967-5979. PubMed ID: 33528626 [TBL] [Abstract][Full Text] [Related]
3. Prediction of lymphovascular space invasion using a combination of tenascin-C, cox-2, and PET/CT radiomics in patients with early-stage cervical squamous cell carcinoma. Li X; Xu C; Yu Y; Guo Y; Sun H BMC Cancer; 2021 Jul; 21(1):866. PubMed ID: 34320931 [TBL] [Abstract][Full Text] [Related]
4. Value of [ Li K; Sun H; Lu Z; Xin J; Zhang L; Guo Y; Guo Q Eur J Radiol; 2018 Sep; 106():160-166. PubMed ID: 30150039 [TBL] [Abstract][Full Text] [Related]
5. Framework for Machine Learning of CT and PET Radiomics to Predict Local Failure after Radiotherapy in Locally Advanced Head and Neck Cancers. Devakumar D; Sunny G; Sasidharan BK; Bowen SR; Nadaraj A; Jeyseelan L; Mathew M; Irodi A; Isiah R; Pavamani S; John S; T Thomas HM J Med Phys; 2021; 46(3):181-188. PubMed ID: 34703102 [TBL] [Abstract][Full Text] [Related]
6. CT-based radiomics in predicting pathological response in non-small cell lung cancer patients receiving neoadjuvant immunotherapy. Lin Q; Wu HJ; Song QS; Tang YK Front Oncol; 2022; 12():937277. PubMed ID: 36267975 [TBL] [Abstract][Full Text] [Related]
7. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
8. Integration of clinicopathologic identification and deep transferrable image feature representation improves predictions of lymph node metastasis in prostate cancer. Hou Y; Bao J; Song Y; Bao ML; Jiang KW; Zhang J; Yang G; Hu CH; Shi HB; Wang XM; Zhang YD EBioMedicine; 2021 Jun; 68():103395. PubMed ID: 34049247 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Deep Learning Radiomics Model Predicting Lymph Node Status in Operable Cervical Cancer. Dong T; Yang C; Cui B; Zhang T; Sun X; Song K; Wang L; Kong B; Yang X Front Oncol; 2020; 10():464. PubMed ID: 32373511 [No Abstract] [Full Text] [Related]
10. Imbalanced Data Correction Based PET/CT Radiomics Model for Predicting Lymph Node Metastasis in Clinical Stage T1 Lung Adenocarcinoma. Lv J; Chen X; Liu X; Du D; Lv W; Lu L; Wu H Front Oncol; 2022; 12():788968. PubMed ID: 35155231 [TBL] [Abstract][Full Text] [Related]
11. Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables. Fan L; Li J; Zhang H; Yin H; Zhang R; Zhang J; Chen X Abdom Radiol (NY); 2022 Apr; 47(4):1209-1222. PubMed ID: 35089370 [TBL] [Abstract][Full Text] [Related]
12. Combinative evaluation of primary tumor and lymph nodes in predicting pelvic lymphatic metastasis in early-stage cervical cancer: A multiparametric PET-CT study. Li K; Sun H; Guo Q Eur J Radiol; 2019 Apr; 113():153-157. PubMed ID: 30927941 [TBL] [Abstract][Full Text] [Related]
13. Correlation analysis between unenhanced and enhanced CT radiomic features of lung cancers presenting as solid nodules and their efficacy for predicting hilar and mediastinal lymph node metastases. Yuan H; Zou Y; Gao Y; Zhang S; Zheng X; You X Front Radiol; 2022; 2():911179. PubMed ID: 37492652 [TBL] [Abstract][Full Text] [Related]
14. Quantitative kinetic parameters of primary tumor can be used to predict pelvic lymph node metastasis in early-stage cervical cancer. Bai Z; Shi J; Yang Z; Zeng W; Hu H; Zhong J; Duan X; Wang X; Shen J Abdom Radiol (NY); 2021 Mar; 46(3):1129-1136. PubMed ID: 32930831 [TBL] [Abstract][Full Text] [Related]
15. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Chang C; Sun X; Wang G; Yu H; Zhao W; Ge Y; Duan S; Qian X; Wang R; Lei B; Wang L; Liu L; Ruan M; Yan H; Liu C; Chen J; Xie W Front Oncol; 2021; 11():603882. PubMed ID: 33738250 [TBL] [Abstract][Full Text] [Related]
16. Diagnosing postoperative lymph node metastasis in thyroid cancer with multimodal radiomics and clinical features. Fan X; Zhang H; Wang Z; Zhang X; Qin S; Zhang J; Hu F; Yang M; Zhang J; Yu F Digit Health; 2024; 10():20552076241233244. PubMed ID: 38384366 [TBL] [Abstract][Full Text] [Related]
17. Predictive value and potential association of PET/CT radiomics on lymph node metastasis of cervical cancer. Yang S; Zhang W; Liu C; Li C; Hua K Ann Med Surg (Lond); 2024 Feb; 86(2):805-810. PubMed ID: 38333288 [TBL] [Abstract][Full Text] [Related]
18. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from Wang H; Zhou Z; Li Y; Chen Z; Lu P; Wang W; Liu W; Yu L EJNMMI Res; 2017 Dec; 7(1):11. PubMed ID: 28130689 [TBL] [Abstract][Full Text] [Related]
19. Predicting EGFR mutation subtypes in lung adenocarcinoma using Liu Q; Sun D; Li N; Kim J; Feng D; Huang G; Wang L; Song S Transl Lung Cancer Res; 2020 Jun; 9(3):549-562. PubMed ID: 32676319 [TBL] [Abstract][Full Text] [Related]
20. Analysis of Cross-Combinations of Feature Selection and Machine-Learning Classification Methods Based on [ Gómez OV; Herraiz JL; Udías JM; Haug A; Papp L; Cioni D; Neri E Cancers (Basel); 2022 Jun; 14(12):. PubMed ID: 35740588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]