BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36311402)

  • 21. Macroplastic litter colonization by stream macroinvertebrates relative to that of plant litter: A meta-analysis.
    Ferreira V
    Environ Pollut; 2024 Feb; 342():123108. PubMed ID: 38070646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.
    Follstad Shah JJ; Kominoski JS; Ardón M; Dodds WK; Gessner MO; Griffiths NA; Hawkins CP; Johnson SL; Lecerf A; LeRoy CJ; Manning DWP; Rosemond AD; Sinsabaugh RL; Swan CM; Webster JR; Zeglin LH
    Glob Chang Biol; 2017 Aug; 23(8):3064-3075. PubMed ID: 28039909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing biotic drivers of litter breakdown across stream compartments.
    Peralta-Maraver I; Perkins DM; Thompson MSA; Fussmann K; Reiss J; Robertson AL
    J Anim Ecol; 2019 Aug; 88(8):1146-1157. PubMed ID: 31032898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effects of benthic macro-invertebrate on decomposition of Acer buergerianum leaf litter in streams].
    Jiang LH; Wang BX; Chen AQ; Lan CJ
    Ying Yong Sheng Tai Xue Bao; 2009 May; 20(5):1184-9. PubMed ID: 19803179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of increasing temperature and, CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems.
    Martins RT; Rezende RS; Gonçalves Júnior JF; Lopes A; Piedade MTF; Cavalcante HL; Hamada N
    PLoS One; 2017; 12(11):e0188791. PubMed ID: 29190723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composition of riparian litter input regulates organic matter decomposition: Implications for headwater stream functioning in a managed forest landscape.
    Lidman J; Jonsson M; Burrows RM; Bundschuh M; Sponseller RA
    Ecol Evol; 2017 Feb; 7(4):1068-1077. PubMed ID: 28303178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nutrient addition accelerates leaf breakdown in an alpine springbrook.
    Robinson CT; Gessner MO
    Oecologia; 2000 Feb; 122(2):258-263. PubMed ID: 28308380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data.
    Wallace JB; Eggert SL; Meyer JL; Webster JR
    Ecology; 2015 May; 96(5):1213-28. PubMed ID: 26236836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaf litter quality drives the feeding by invertebrate shredders in tropical streams.
    Sena G; Francisco Gonçalves Júnior J; Tavares Martins R; Hamada N; de Souza Rezende R
    Ecol Evol; 2020 Aug; 10(16):8563-8570. PubMed ID: 32884640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crayfish impact desert river ecosystem function and litter-dwelling invertebrate communities through association with novel detrital resources.
    Moody EK; Sabo JL
    PLoS One; 2013; 8(5):e63274. PubMed ID: 23667600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating ecosystem functioning following river restoration: the role of hydromorphology, bacteria, and macroinvertebrates.
    Lin Q; Zhang Y; Marrs R; Sekar R; Luo X; Wu N
    Sci Total Environ; 2020 Nov; 743():140583. PubMed ID: 32758816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined effects of water temperature, grazing snails and terrestrial herbivores on leaf decomposition in urban streams.
    Xiang H; Zhang Y; Atkinson D; Sekar R
    PeerJ; 2019; 7():e7580. PubMed ID: 31608164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams.
    Rasmussen JJ; Wiberg-Larsen P; Baattrup-Pedersen A; Monberg RJ; Kronvang B
    Sci Total Environ; 2012 Feb; 416():148-55. PubMed ID: 22177030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemistry Matters: High Leaf Litter Consumption Does Not Represent a Direct Increase in Shredders' Biomass.
    Cararo ER; Bernardi JP; Lima-Rezende CA; Magro JD; Rezende RS
    Neotrop Entomol; 2023 Jun; 52(3):452-462. PubMed ID: 37129841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
    Manning DW; Rosemond AD; Gulis V; Benstead JP; Kominoski JS; Maerz JC
    Ecol Appl; 2016 Sep; 26(6):1745-1757. PubMed ID: 27755690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of metal pollution from mining on litter decomposition in streams.
    Run L; Yueting P; Siyuan C; Jiachen S; Yunchao L; Shuiyun Z; Xingjun T
    Environ Pollut; 2022 Mar; 296():118698. PubMed ID: 34929208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of spatial scale on breakdown of leaves in a tropical watershed.
    Rezende RS; Petrucio MM; Gonçalves JF
    PLoS One; 2014; 9(5):e97072. PubMed ID: 24810918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Leaf-litter breakdown as a tool to assess the functional integrity of high Andean streams of Southern Ecuador].
    Rincón J; Merchán D; Sparer A; Rojas D; Zarate E
    Rev Biol Trop; 2017 Mar; 65(1):321-34. PubMed ID: 29466647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of water abstraction on storage and breakdown of coarse organic matter in mountain streams.
    Arroita M; Aristi I; Díez J; Martinez M; Oyarzun G; Elosegi A
    Sci Total Environ; 2015 Jan; 503-504():233-40. PubMed ID: 25039020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates.
    Manning DW; Rosemond AD; Kominoski JS; Gulis V; Benstead JP; Maerz JC
    Ecology; 2015 Aug; 96(8):2214-24. PubMed ID: 26405746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.