These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 36311477)

  • 1. Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering.
    Geng B; Jia X; Peng X; Han Y
    Metab Eng Commun; 2022 Dec; 15():e00211. PubMed ID: 36311477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial conversion of xylose into useful bioproducts.
    Jagtap SS; Rao CV
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9015-9036. PubMed ID: 30141085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis.
    Weng C; Peng X; Han Y
    Biotechnol Biofuels; 2021 Apr; 14(1):84. PubMed ID: 33812391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Metabolic engineering for the efficient co-utilization of glucose and xylose].
    Wang Q; Gao J; Zhou Y
    Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2710-2730. PubMed ID: 39174478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered microbial host selection for value-added bioproducts from lignocellulose.
    de Paula RG; Antoniêto ACC; Ribeiro LFC; Srivastava N; O'Donovan A; Mishra PK; Gupta VK; Silva RN
    Biotechnol Adv; 2019 Nov; 37(6):107347. PubMed ID: 30771467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering.
    Weng C; Peng X; Han Y
    Adv Appl Microbiol; 2023; 124():119-146. PubMed ID: 37597946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering for the utilization of carbohydrate portions of lignocellulosic biomass.
    Kim J; Hwang S; Lee SM
    Metab Eng; 2022 May; 71():2-12. PubMed ID: 34626808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid.
    Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM
    Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass.
    Das S; Chandukishore T; Ulaganathan N; Dhodduraj K; Gorantla SS; Chandna T; Gupta LK; Sahoo A; Atheena PV; Raval R; Anjana PA; DasuVeeranki V; Prabhu AA
    Int J Biol Macromol; 2024 May; 266(Pt 2):131290. PubMed ID: 38569993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in
    Servinsky MD; Renberg RL; Perisin MA; Gerlach ES; Liu S; Sund CJ
    mSystems; 2018; 3(5):. PubMed ID: 30374459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources.
    An N; Chen X; Sheng H; Wang J; Sun X; Yan Y; Shen X; Yuan Q
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34215883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion.
    Woo S; Lim HG; Han YH; Park S; Noh MH; Baek D; Moon JH; Seo SW; Jung GY
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):58. PubMed ID: 35614459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts.
    Lu H; Yadav V; Bilal M; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 2):132574. PubMed ID: 34656619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering applications to renewable resource utilization.
    Aristidou A; Penttilä M
    Curr Opin Biotechnol; 2000 Apr; 11(2):187-98. PubMed ID: 10753763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 18. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel approach to engineer strains for simultaneous sugar utilization.
    Gawand P; Hyland P; Ekins A; Martin VJ; Mahadevan R
    Metab Eng; 2013 Nov; 20():63-72. PubMed ID: 23988492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous bioconversion of cellulose and hemicellulose to ethanol.
    Chandrakant P; Bisaria VS
    Crit Rev Biotechnol; 1998; 18(4):295-331. PubMed ID: 9887507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.