These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 36311827)

  • 1. Identifying a Hidden Conglomerate Chiral Pool in the CSD.
    Walsh MP; Barclay JA; Begg CS; Xuan J; Johnson NT; Cole JC; Kitching MO
    JACS Au; 2022 Oct; 2(10):2235-2250. PubMed ID: 36311827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conglomerate Crystallization in the Cambridge Structural Database (2020-2021).
    Walsh MP; Barclay JA; Begg CS; Xuan J; Kitching MO
    Cryst Growth Des; 2023 Apr; 23(4):2837-2844. PubMed ID: 37038395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database?
    Rekis T
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Jun; 76(Pt 3):307-315. PubMed ID: 32831251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Deracemizations.
    Buhse T; Cruz JM; Noble-Terán ME; Hochberg D; Ribó JM; Crusats J; Micheau JC
    Chem Rev; 2021 Feb; 121(4):2147-2229. PubMed ID: 33464058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirogenesis and Amplification of Molecular Chirality Using Optical Vortices.
    Sakamoto M; Uemura N; Saito R; Shimobayashi H; Yoshida Y; Mino T; Omatsu T
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12819-12823. PubMed ID: 33783074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching for stereoisomerism in crystallographic databases: algorithm, analysis and chiral curiosities.
    Grothe E; Meekes H; de Gelder R
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2017 Jun; 73(Pt 3):453-465. PubMed ID: 28572555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization*.
    Zhou F; Shemchuk O; Charpentier MD; Matheys C; Collard L; Ter Horst JH; Leyssens T
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20264-20268. PubMed ID: 34233036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous achiral symmetry breaking in liquid crystalline phases.
    Takezoe H
    Top Curr Chem; 2012; 318():303-30. PubMed ID: 21915774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Aspects of Solid Solutions of Enantiomers.
    Brandel C; Petit S; Cartigny Y; Coquerel G
    Curr Pharm Des; 2016; 22(32):4929-4941. PubMed ID: 27510486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three different types of chirality-driven crystallization within the series of uniformly substituted phenyl glycerol ethers.
    Bredikhin AA; Bredikhina ZA; Novikova VG; Pashagin AV; Zakharychev DV; Gubaidullin AT
    Chirality; 2008 Nov; 20(10):1092-103. PubMed ID: 18767134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubility and some crystallization properties of conglomerate forming chiral drug guaifenesin in water.
    Fayzullin RR; Lorenz H; Bredikhina ZA; Bredikhin AA; Seidel-Morgenstern A
    J Pharm Sci; 2014 Oct; 103(10):3176-82. PubMed ID: 25091705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of biochirality: crossovers and nonclassical crystallization kinetics of aspartic acid in water.
    Lee T; Lin YK; Tsai YC; Lee HL
    Chirality; 2013 Nov; 25(11):768-79. PubMed ID: 23873735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pasteur made simple - mechanochemical transformation of racemic amino acid crystals into racemic conglomerate crystals.
    Viedma C; Lennox C; Cuccia LA; Cintas P; Ortiz JE
    Chem Commun (Camb); 2020 Apr; 56(33):4547-4550. PubMed ID: 32202285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplification of chirality in two-dimensional enantiomorphous lattices.
    Fasel R; Parschau M; Ernst KH
    Nature; 2006 Jan; 439(7075):449-52. PubMed ID: 16437111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallo-Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution.
    Xu C; Lin Q; Shan C; Han X; Wang H; Wang H; Zhang W; Chen Z; Guo C; Xie Y; Yu X; Song B; Song H; Wojtas L; Li X
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202203099. PubMed ID: 35474631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantiomer surface chemistry: conglomerate versus racemate formation on surfaces.
    Dutta S; Gellman AJ
    Chem Soc Rev; 2017 Dec; 46(24):7787-7839. PubMed ID: 29165467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolute asymmetric Strecker synthesis in a mixed aqueous medium: reliable access to enantioenriched α-aminonitrile.
    Miyagawa S; Aiba S; Kawamoto H; Tokunaga Y; Kawasaki T
    Org Biomol Chem; 2019 Jan; 17(5):1238-1244. PubMed ID: 30656321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic mirror-symmetry breaking in bicontinuous cubic phases.
    Dressel C; Liu F; Prehm M; Zeng X; Ungar G; Tschierske C
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13115-20. PubMed ID: 25257551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous chiral resolution of pentahelicene molecules on Cd(0001).
    Han Q; Li Z; Sun K; Tao ML; Shi MX; Yang DX; Xia JX; Wan JJ; Wang JZ
    Phys Chem Chem Phys; 2022 May; 24(17):10292-10296. PubMed ID: 35437551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CSD Communications of the Cambridge Structural Database.
    Ferrence GM; Tovee CA; Holgate SJW; Johnson NT; Lightfoot MP; Nowakowska-Orzechowska KL; Ward SC
    IUCrJ; 2023 Jan; 10(Pt 1):6-15. PubMed ID: 36598498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.