These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36311833)

  • 1. Dynamic Electrochemical Interfaces for Energy Conversion and Storage.
    Shin H; Yoo JM; Sung YE; Chung DY
    JACS Au; 2022 Oct; 2(10):2222-2234. PubMed ID: 36311833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolyte-Wettability Issues and Challenges of Electrode Materials in Electrochemical Energy Storage, Energy Conversion, and Beyond.
    Zhao L; Li Y; Yu M; Peng Y; Ran F
    Adv Sci (Weinh); 2023 Jun; 10(17):e2300283. PubMed ID: 37085907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.
    Lin CF; Qi Y; Gregorczyk K; Lee SB; Rubloff GW
    Acc Chem Res; 2018 Jan; 51(1):97-106. PubMed ID: 29293316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking the Oxygen Dynamics of Solid-Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies.
    Cheng W; Su H; Liu Q
    Acc Chem Res; 2022 Jul; 55(14):1949-1959. PubMed ID: 35801353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electrochemical Energy Storage Devices.
    Li L; Liu W; Dong H; Gui Q; Hu Z; Li Y; Liu J
    Adv Mater; 2021 Apr; 33(13):e2004959. PubMed ID: 33615578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Happy Get-Together - Probing Electrochemical Interfaces by Non-Linear Vibrational Spectroscopy.
    De R; Dietzek-Ivanšić B
    Chemistry; 2022 Oct; 28(55):e202200407. PubMed ID: 35730530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operando Investigation into Dynamic Evolution of Cathode-Electrolyte Interfaces in a Li-Ion Battery.
    Chen D; Mahmoud MA; Wang JH; Waller GH; Zhao B; Qu C; El-Sayed MA; Liu M
    Nano Lett; 2019 Mar; 19(3):2037-2043. PubMed ID: 30803236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis.
    Yoo JM; Shin H; Chung DY; Sung YE
    Acc Chem Res; 2022 May; 55(9):1278-1289. PubMed ID: 35436084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Operando Visualization and Dynamic Manipulation of Electrochemical Processes at the Electrode-Solution Interface.
    Xin H; Wang H; Zhang W; Chen Y; Ji Q; Zhang G; Liu H; Taylor AD; Qu J
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202206236. PubMed ID: 35727890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.