These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 36312023)

  • 1. Chloride imbalance in Fragile X syndrome.
    Miles KD; Doll CA
    Front Neurosci; 2022; 16():1008393. PubMed ID: 36312023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome.
    Kang JY; Chadchankar J; Vien TN; Mighdoll MI; Hyde TM; Mather RJ; Deeb TZ; Pangalos MN; Brandon NJ; Dunlop J; Moss SJ
    J Biol Chem; 2017 Apr; 292(16):6621-6632. PubMed ID: 28213518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain.
    Hamze M; Medina I; Delmotte Q; Porcher C
    Front Physiol; 2021; 12():798066. PubMed ID: 34955901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAergic signaling as therapeutic target for autism spectrum disorders.
    Cellot G; Cherubini E
    Front Pediatr; 2014; 2():70. PubMed ID: 25072038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and regulation of chloride homeostasis in the central nervous system.
    Watanabe M; Fukuda A
    Front Cell Neurosci; 2015; 9():371. PubMed ID: 26441542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The postnatal GABA shift: A developmental perspective.
    Peerboom C; Wierenga CJ
    Neurosci Biobehav Rev; 2021 May; 124():179-192. PubMed ID: 33549742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo.
    Higashimori H; Schin CS; Chiang MS; Morel L; Shoneye TA; Nelson DL; Yang Y
    J Neurosci; 2016 Jul; 36(27):7079-94. PubMed ID: 27383586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragile X syndrome: the GABAergic system and circuit dysfunction.
    Paluszkiewicz SM; Martin BS; Huntsman MM
    Dev Neurosci; 2011; 33(5):349-64. PubMed ID: 21934270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fmrp regulates neuronal balance in embryonic motor circuit formation.
    Barker CM; Miles KD; Doll CA
    Front Neurosci; 2022; 16():962901. PubMed ID: 36408418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The developmental switch in GABA polarity is delayed in fragile X mice.
    He Q; Nomura T; Xu J; Contractor A
    J Neurosci; 2014 Jan; 34(2):446-50. PubMed ID: 24403144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous levels of Cl- transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex.
    Conti L; Palma E; Roseti C; Lauro C; Cipriani R; de Groot M; Aronica E; Limatola C
    Epilepsia; 2011 Sep; 52(9):1635-44. PubMed ID: 21635237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome.
    Nomura T; Musial TF; Marshall JJ; Zhu Y; Remmers CL; Xu J; Nicholson DA; Contractor A
    J Neurosci; 2017 Nov; 37(47):11298-11310. PubMed ID: 29038238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation Delay of Human GABAergic Neurogenesis in Fragile X Syndrome Pluripotent Stem Cells.
    Zhang A; Sokolova I; Domissy A; Davis J; Rao L; Hana Utami K; Wang Y; Hagerman RJ; Pouladi MA; Sanna P; Boland MJ; Loring JF
    Stem Cells Transl Med; 2022 Jun; 11(6):613-629. PubMed ID: 35556144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When Are Depolarizing GABAergic Responses Excitatory?
    Kilb W
    Front Mol Neurosci; 2021; 14():747835. PubMed ID: 34899178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance.
    Cherubini E; Di Cristo G; Avoli M
    Front Cell Neurosci; 2021; 15():813441. PubMed ID: 35069119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the Cation-Chloride Co-Transporter NKCC1 to Re-Establish GABAergic Inhibition and an Appropriate Excitatory/Inhibitory Balance in Selective Neuronal Circuits: A Novel Approach for the Treatment of Alzheimer's Disease.
    Capsoni S; Arisi I; Malerba F; D'Onofrio M; Cattaneo A; Cherubini E
    Brain Sci; 2022 Jun; 12(6):. PubMed ID: 35741668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interneuron Dysfunction and Inhibitory Deficits in Autism and Fragile X Syndrome.
    Nomura T
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal seizures.
    Kahle KT; Staley KJ
    Neurosurg Focus; 2008 Sep; 25(3):E22. PubMed ID: 18759624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired GABA Neural Circuits Are Critical for Fragile X Syndrome.
    Gao F; Qi L; Yang Z; Yang T; Zhang Y; Xu H; Zhao H
    Neural Plast; 2018; 2018():8423420. PubMed ID: 30402088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments.
    Tempio A; Boulksibat A; Bardoni B; Delhaye S
    Front Neurosci; 2023; 17():1171895. PubMed ID: 37188005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.