BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 36312024)

  • 1. Clinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction.
    Aboian M; Bousabarah K; Kazarian E; Zeevi T; Holler W; Merkaj S; Cassinelli Petersen G; Bahar R; Subramanian H; Sunku P; Schrickel E; Bhawnani J; Zawalich M; Mahajan A; Malhotra A; Payabvash S; Tocino I; Lin M; Westerhoff M
    Front Neurosci; 2022; 16():860208. PubMed ID: 36312024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence.
    Caballo M; Pangallo DR; Mann RM; Sechopoulos I
    Comput Biol Med; 2020 Mar; 118():103629. PubMed ID: 32174316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An active learning approach to train a deep learning algorithm for tumor segmentation from brain MR images.
    Boehringer AS; Sanaat A; Arabi H; Zaidi H
    Insights Imaging; 2023 Aug; 14(1):141. PubMed ID: 37620554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics.
    Gross M; Huber S; Arora S; Ze'evi T; Haider SP; Kucukkaya AS; Iseke S; Kuhn TN; Gebauer B; Michallek F; Dewey M; Vilgrain V; Sartoris R; Ronot M; Jaffe A; Strazzabosco M; Chapiro J; Onofrey JA
    Eur Radiol; 2024 Jan; ():. PubMed ID: 38217704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Tumor Segmentation and Brain Tissue Extraction from Multiparametric MRI of Pediatric Brain Tumors: A Multi-Institutional Study.
    Kazerooni AF; Arif S; Madhogarhia R; Khalili N; Haldar D; Bagheri S; Familiar AM; Anderson H; Haldar S; Tu W; Kim MC; Viswanathan K; Muller S; Prados M; Kline C; Vidal L; Aboian M; Storm PB; Resnick AC; Ware JB; Vossough A; Davatzikos C; Nabavizadeh A
    medRxiv; 2023 Jan; ():. PubMed ID: 36711966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical capability of modern brain tumor segmentation models.
    Berkley A; Saueressig C; Shukla U; Chowdhury I; Munoz-Gauna A; Shehu O; Singh R; Munbodh R
    Med Phys; 2023 Aug; 50(8):4943-4959. PubMed ID: 36847185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario.
    Di Ieva A; Russo C; Liu S; Jian A; Bai MY; Qian Y; Magnussen JS
    Neuroradiology; 2021 Aug; 63(8):1253-1262. PubMed ID: 33501512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning.
    Lin YC; Lin G; Pandey S; Yeh CH; Wang JJ; Lin CY; Ho TY; Ko SF; Ng SH
    Eur Radiol; 2023 Sep; 33(9):6548-6556. PubMed ID: 37338554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNN-based automatic segmentations and radiomics feature reliability on contrast-enhanced ultrasound images for renal tumors.
    Yang Y; Chen F; Liang H; Bai Y; Wang Z; Zhao L; Ma S; Niu Q; Li F; Xie T; Cai Y
    Front Oncol; 2023; 13():1166988. PubMed ID: 37333811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BOA: A CT-Based Body and Organ Analysis for Radiologists at the Point of Care.
    Haubold J; Baldini G; Parmar V; Schaarschmidt BM; Koitka S; Kroll L; van Landeghem N; Umutlu L; Forsting M; Nensa F; Hosch R
    Invest Radiol; 2024 Jun; 59(6):433-441. PubMed ID: 37994150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Radiomics feature quantification using semiautomatic volumetric segmentation.
    Parmar C; Rios Velazquez E; Leijenaar R; Jermoumi M; Carvalho S; Mak RH; Mitra S; Shankar BU; Kikinis R; Haibe-Kains B; Lambin P; Aerts HJ
    PLoS One; 2014; 9(7):e102107. PubMed ID: 25025374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis.
    Dunn B; Pierobon M; Wei Q
    Bioengineering (Basel); 2023 Jun; 10(6):. PubMed ID: 37370621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expert-level pediatric brain tumor segmentation in a limited data scenario with stepwise transfer learning.
    Boyd A; Ye Z; Prabhu S; Tjong MC; Zha Y; Zapaishchykova A; Vajapeyam S; Hayat H; Chopra R; Liu KX; Nabavidazeh A; Resnick A; Mueller S; Haas-Kogan D; Aerts HJWL; Poussaint T; Kann BH
    medRxiv; 2023 Sep; ():. PubMed ID: 37425854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.
    Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG
    J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auto-segmentation of Adult-Type Diffuse Gliomas: Comparison of Transfer Learning-Based Convolutional Neural Network Model vs. Radiologists.
    Wan Q; Kim J; Lindsay C; Chen X; Li J; Iorgulescu JB; Huang RY; Zhang C; Reardon D; Young GS; Qin L
    J Imaging Inform Med; 2024 Feb; ():. PubMed ID: 38383806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole volume brain extraction for multi-centre, multi-disease FLAIR MRI datasets.
    Khademi A; Reiche B; DiGregorio J; Arezza G; Moody AR
    Magn Reson Imaging; 2020 Feb; 66():116-130. PubMed ID: 31472262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Brain Tumor Segmentation (BraTS) Challenge 2023:
    Kazerooni AF; Khalili N; Liu X; Haldar D; Jiang Z; Anwar SM; Albrecht J; Adewole M; Anazodo U; Anderson H; Bagheri S; Baid U; Bergquist T; Borja AJ; Calabrese E; Chung V; Conte GM; Dako F; Eddy J; Ezhov I; Familiar A; Farahani K; Haldar S; Iglesias JE; Janas A; Johansen E; Jones BV; Kofler F; LaBella D; Lai HA; Van Leemput K; Li HB; Maleki N; McAllister AS; Meier Z; Menze B; Moawad AW; Nandolia KK; Pavaine J; Piraud M; Poussaint T; Prabhu SP; Reitman Z; Rodriguez A; Rudie JD; Sanchez-Montano M; Shaikh IS; Shah LM; Sheth N; Shinohara RT; Tu W; Viswanathan K; Wang C; Ware JB; Wiestler B; Wiggins W; Zapaishchykova A; Aboian M; Bornhorst M; de Blank P; Deutsch M; Fouladi M; Hoffman L; Kann B; Lazow M; Mikael L; Nabavizadeh A; Packer R; Resnick A; Rood B; Vossough A; Bakas S; Linguraru MG
    ArXiv; 2024 Mar; ():. PubMed ID: 37292481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis.
    Spuhler KD; Ding J; Liu C; Sun J; Serrano-Sosa M; Moriarty M; Huang C
    Magn Reson Med; 2019 Aug; 82(2):786-795. PubMed ID: 30957936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+.
    Wang J; Peng Y; Jing S; Han L; Li T; Luo J
    BMC Cancer; 2023 Nov; 23(1):1060. PubMed ID: 37923988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.