These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1859 related articles for article (PubMed ID: 36312291)
21. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia. Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887 [TBL] [Abstract][Full Text] [Related]
22. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study. Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407 [TBL] [Abstract][Full Text] [Related]
23. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
24. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study. Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403 [TBL] [Abstract][Full Text] [Related]
25. Early prediction of noninvasive ventilation failure after extubation: development and validation of a machine-learning model. Wang H; Zhao QY; Luo JC; Liu K; Yu SJ; Ma JF; Luo MH; Hao GW; Su Y; Zhang YJ; Tu GW; Luo Z BMC Pulm Med; 2022 Aug; 22(1):304. PubMed ID: 35941641 [TBL] [Abstract][Full Text] [Related]
26. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury. Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153 [TBL] [Abstract][Full Text] [Related]
27. Early prognosis prediction for non-variceal upper gastrointestinal bleeding in the intensive care unit: based on interpretable machine learning. Zhao X; Wei S; Pan Y; Qu K; Yan G; Wang X; Song Y Eur J Med Res; 2024 Aug; 29(1):442. PubMed ID: 39217369 [TBL] [Abstract][Full Text] [Related]
28. Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm. Ren W; Zou K; Huang S; Xu H; Zhang W; Shi X; Shi L; Zhong X; Peng Y; Tang X; Lü M J Clin Gastroenterol; 2024 Jul; 58(6):619-626. PubMed ID: 37712768 [TBL] [Abstract][Full Text] [Related]
29. Development and validation a nomogram prediction model for early diagnosis of bloodstream infections in the intensive care unit. Qi Z; Dong L; Lin J; Duan M Front Cell Infect Microbiol; 2024; 14():1348896. PubMed ID: 38500500 [TBL] [Abstract][Full Text] [Related]
30. Development and Validation of a Machine-Learning Model for Prediction of Extubation Failure in Intensive Care Units. Zhao QY; Wang H; Luo JC; Luo MH; Liu LP; Yu SJ; Liu K; Zhang YJ; Sun P; Tu GW; Luo Z Front Med (Lausanne); 2021; 8():676343. PubMed ID: 34079812 [No Abstract] [Full Text] [Related]
31. Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning. Huang J; Liu X; Jin W Digit Health; 2024; 10():20552076241280126. PubMed ID: 39314817 [TBL] [Abstract][Full Text] [Related]
32. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database. Guo J; Cheng H; Wang Z; Qiao M; Li J; Lyu J Front Neurol; 2023; 14():1290117. PubMed ID: 38162445 [TBL] [Abstract][Full Text] [Related]
33. A Machine Learning Approach for the Prediction of Traumatic Brain Injury Induced Coagulopathy. Yang F; Peng C; Peng L; Wang J; Li Y; Li W Front Med (Lausanne); 2021; 8():792689. PubMed ID: 34957161 [No Abstract] [Full Text] [Related]
34. Reinforcement Learning to Optimize Ventilator Settings for Patients on Invasive Mechanical Ventilation: Retrospective Study. Liu S; Xu Q; Xu Z; Liu Z; Sun X; Xie G; Feng M; See KC J Med Internet Res; 2024 Oct; 26():e44494. PubMed ID: 39219230 [TBL] [Abstract][Full Text] [Related]
35. Development and validation of a prediction model for in-hospital death in patients with heart failure and atrial fibrillation. Yan M; Liu H; Xu Q; Yu S; Tang K; Xie Y BMC Cardiovasc Disord; 2023 Oct; 23(1):505. PubMed ID: 37821809 [TBL] [Abstract][Full Text] [Related]
37. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury. Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651 [TBL] [Abstract][Full Text] [Related]
38. A nomogram for predicting hospital mortality of critical ill patients with sepsis and cancer: a retrospective cohort study based on MIMIC-IV and eICU-CRD. Yuan ZN; Xue YJ; Wang HJ; Qu SN; Huang CL; Wang H; Zhang H; Xing XZ BMJ Open; 2023 Sep; 13(9):e072112. PubMed ID: 37696627 [TBL] [Abstract][Full Text] [Related]
39. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related]
40. Explainable machine learning for predicting neurological outcome in hemorrhagic and ischemic stroke patients in critical care. Wei H; Huang X; Zhang Y; Jiang G; Ding R; Deng M; Wei L; Yuan H Front Neurol; 2024; 15():1385013. PubMed ID: 38915793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]