BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36313064)

  • 1. Quantitative Changes of Phenolic Compounds in Pine Twigs by Variety, Harvest Season, and Growing Region.
    Kim JH; Seo JE; Choi SW
    Prev Nutr Food Sci; 2022 Sep; 27(3):299-308. PubMed ID: 36313064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Changes of Flavonol Glycosides from Pine Needles by Cultivar, Harvest Season, and Thermal Process.
    Jeon YH; Seo JE; Kim JH; Lee YJ; Choi SW
    Prev Nutr Food Sci; 2021 Mar; 26(1):100-108. PubMed ID: 33859965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroprotective Effects of Korean Red Pine (
    Kim JW; Im S; Jeong HR; Jung YS; Lee I; Kim KJ; Park SK; Kim DO
    J Microbiol Biotechnol; 2018 May; 28(5):679-687. PubMed ID: 29539881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical characteristics of normal, woolly apple aphid-damaged, and mechanically damaged twigs of six apple cultivars, measured in autumn wood.
    Zhou HX; Wang XC; Yu Y; Tan XM; Cheng ZQ; Zhang AS; Men XY; Li-Li L
    J Econ Entomol; 2013 Apr; 106(2):1011-7. PubMed ID: 23786094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Functional Constituents in Mulberry (Morus alba L.) Twigs by Different Cultivars, Producing Areas, and Heat Processings.
    Choi SW; Jang YJ; Lee YJ; Leem HH; Kim EO
    Prev Nutr Food Sci; 2013 Dec; 18(4):256-62. PubMed ID: 24551827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antihypertensive Effects of Polyphenolic Extract from Korean Red Pine (
    Kim KJ; Hwang ES; Kim MJ; Park JH; Kim DO
    Antioxidants (Basel); 2020 Apr; 9(4):. PubMed ID: 32325920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical analysis of volatiles emitted by Pinus svlvestris after induction by insect oviposition.
    Mumm R; Schrank K; Wegener R; Schulz S; Hilker M
    J Chem Ecol; 2003 May; 29(5):1235-52. PubMed ID: 12857033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Lignan and stilbenoid mixture shows anticarcinogenic efficacy in preclinical PC-3M-luc2 prostate cancer model.
    Yatkin E; Polari L; Laajala TD; Smeds A; Eckerman C; Holmbom B; Saarinen NM; Aittokallio T; Mäkelä SI
    PLoS One; 2014; 9(4):e93764. PubMed ID: 24699425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochemical Characterization of Chinese Bayberry (Myrica rubra Sieb. et Zucc.) of 17 Cultivars and Their Antioxidant Properties.
    Zhang X; Huang H; Zhang Q; Fan F; Xu C; Sun C; Li X; Chen K
    Int J Mol Sci; 2015 Jun; 16(6):12467-81. PubMed ID: 26042467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A plant notices insect egg deposition and changes its rate of photosynthesis.
    Schröder R; Forstreuter M; Hilker M
    Plant Physiol; 2005 May; 138(1):470-7. PubMed ID: 15821143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of volatiles from black pine (Pinus nigra): significance of wounding and egg deposition by a herbivorous sawfly.
    Mumm R; Tiemann T; Schulz S; Hilker M
    Phytochemistry; 2004 Dec; 65(24):3221-30. PubMed ID: 15561187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L).
    Materska M; Perucka I
    J Agric Food Chem; 2005 Mar; 53(5):1750-6. PubMed ID: 15740069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive Compounds from Leaves and Twigs of Guayule Grown in a Mediterranean Environment.
    Piluzza G; Campesi G; Molinu MG; Re GA; Sulas L
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32252364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period.
    Táborský J; Sus J; Lachman J; Šebková B; Adamcová A; Šatínský D
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34206687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the constituents of Clematis species. VI. The constituents of Clematis stans Sieb. et Zucc.
    Kizu H; Shimana H; Tomimori T
    Chem Pharm Bull (Tokyo); 1995 Dec; 43(12):2187-94. PubMed ID: 8582022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition and Bioactivity of Lipophilic Metabolites from Needles and Twigs of Korean and Siberian Pines (Pinus koraiensis Siebold & Zucc. and Pinus sibirica Du Tour).
    Shpatov AV; Popov SA; Salnikova OI; Kukina TP; Shmidt EN; Um BH
    Chem Biodivers; 2017 Feb; 14(2):. PubMed ID: 27449469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside.
    Fanzone M; González-Manzano S; Pérez-Alonso J; Escribano-Bailón MT; Jofré V; Assof M; Santos-Buelga C
    Food Chem; 2015 May; 175():166-73. PubMed ID: 25577066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (1S,2R,4S,5S)-angelicoidenol-2-o-β-D-glucopyranoside-A moose deterrent compound in Scots pine (Pinus sylvestris L.).
    Sunnerheim-Sjöberg K
    J Chem Ecol; 1992 Nov; 18(11):2025-39. PubMed ID: 24254781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of allelopathy in inhibition of understory growth in red pine forests.
    Kato-Noguchi H; Kimura F; Ohno O; Suenaga K
    J Plant Physiol; 2017 Nov; 218():66-73. PubMed ID: 28779633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine.
    Shin H; Lee H; Woo KS; Noh EW; Koo YB; Lee KJ
    Tree Physiol; 2009 Mar; 29(3):411-21. PubMed ID: 19203959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.