These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36313302)

  • 1. The olfactory receptor OR51E2 activates ERK1/2 through the Golgi-localized Gβγ-PI3Kγ-ARF1 pathway in prostate cancer cells.
    Xu X; Khater M; Wu G
    Front Pharmacol; 2022; 13():1009380. PubMed ID: 36313302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein-coupled receptor signaling to MAPK.
    Khater M; Bryant CN; Wu G
    J Biol Chem; 2021; 296():100805. PubMed ID: 34022220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers.
    Khater M; Wei Z; Xu X; Huang W; Lokeshwar BL; Lambert NA; Wu G
    J Biol Chem; 2021; 296():100325. PubMed ID: 33493514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism and function of mitogen-activated protein kinase activation by ARF1.
    Zhou F; Dong C; Davis JE; Wu WH; Surrao K; Wu G
    Cell Signal; 2015 Oct; 27(10):2035-2044. PubMed ID: 26169956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling.
    Davis JE; Xie X; Guo J; Huang W; Chu WM; Huang S; Teng Y; Wu G
    Oncotarget; 2016 Jun; 7(26):39834-39845. PubMed ID: 27213581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gallein, a Gβγ subunit signalling inhibitor, inhibits metastatic spread of tumour cells expressing OR51E2 and exposed to its odorant ligand.
    Sanz G; Leray I; Muscat A; Acquistapace A; Cui T; Rivière J; Vincent-Naulleau S; Giandomenico V; Mir LM
    BMC Res Notes; 2017 Oct; 10(1):541. PubMed ID: 29084601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of α(2B)-adrenergic receptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation by ADP-ribosylation factor 1.
    Dong C; Li C; Wu G
    J Biol Chem; 2011 Dec; 286(50):43361-9. PubMed ID: 22025613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odorant Receptor 51E2 Agonist β-ionone Regulates RPE Cell Migration and Proliferation.
    Jovancevic N; Khalfaoui S; Weinrich M; Weidinger D; Simon A; Kalbe B; Kernt M; Kampik A; Gisselmann G; Gelis L; Hatt H
    Front Physiol; 2017; 8():888. PubMed ID: 29249973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GBF1 bears a novel phosphatidylinositol-phosphate binding module, BP3K, to link PI3Kγ activity with Arf1 activation involved in GPCR-mediated neutrophil chemotaxis and superoxide production.
    Mazaki Y; Nishimura Y; Sabe H
    Mol Biol Cell; 2012 Jul; 23(13):2457-67. PubMed ID: 22573891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structurally related odorant ligands of the olfactory receptor OR51E2 differentially promote metastasis emergence and tumor growth.
    Sanz G; Leray I; Grébert D; Antoine S; Acquistapace A; Muscat A; Boukadiri A; Mir LM
    Oncotarget; 2017 Jan; 8(3):4330-4341. PubMed ID: 28032594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gβγ-dependent regulator of PI3Kγ enzymatic activity.
    Shymanets A; Prajwal ; Vadas O; Czupalla C; LoPiccolo J; Brenowitz M; Ghigo A; Hirsch E; Krause E; Wetzker R; Williams RL; Harteneck C; Nürnberg B
    Biochem J; 2015 Jul; 469(1):59-69. PubMed ID: 26173259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ.
    Chen CL; Syahirah R; Ravala SK; Yen YC; Klose T; Deng Q; Tesmer JJG
    bioRxiv; 2023 May; ():. PubMed ID: 37205329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopically expressed olfactory receptors OR51E1 and OR51E2 suppress proliferation and promote cell death in a prostate cancer cell line.
    Pronin A; Slepak V
    J Biol Chem; 2021; 296():100475. PubMed ID: 33640452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The small GTPase ADP-Ribosylation Factor 1 mediates the sensitivity of triple negative breast cancer cells to EGFR tyrosine kinase inhibitors.
    Haines E; Schlienger S; Claing A
    Cancer Biol Ther; 2015; 16(10):1535-47. PubMed ID: 26176330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution and translocation of the G protein ADP-ribosylation factor 1 in live cells is determined by its GTPase activity.
    Vasudevan C; Han W; Tan Y; Nie Y; Li D; Shome K; Watkins SC; Levitan ES; Romero G
    J Cell Sci; 1998 May; 111 ( Pt 9)():1277-85. PubMed ID: 9547306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of protein kinase A activity on the association of ADP-ribosylation factor 1 to golgi membranes.
    Martin ME; Hidalgo J; Rosa JL; Crottet P; Velasco A
    J Biol Chem; 2000 Jun; 275(25):19050-9. PubMed ID: 10858454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells.
    Boulay PL; Cotton M; Melançon P; Claing A
    J Biol Chem; 2008 Dec; 283(52):36425-34. PubMed ID: 18990689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Testosterone Metabolite 19-Hydroxyandrostenedione Induces Neuroendocrine Trans-Differentiation of Prostate Cancer Cells
    Abaffy T; Bain JR; Muehlbauer MJ; Spasojevic I; Lodha S; Bruguera E; O'Neal SK; Kim SY; Matsunami H
    Front Oncol; 2018; 8():162. PubMed ID: 29892571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane.
    Szafer E; Rotman M; Cassel D
    J Biol Chem; 2001 Dec; 276(51):47834-9. PubMed ID: 11592960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells.
    Münzberg C; Höhn K; Krndija D; Maaß U; Bartsch DK; Slater EP; Oswald F; Walther P; Seufferlein T; von Wichert G
    J Cell Mol Med; 2015 May; 19(5):948-59. PubMed ID: 25754106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.