These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 36313308)
1. Photothermal effects of CuS-BSA nanoparticles on H22 hepatoma-bearing mice. Dun X; Liu S; Ge N; Liu M; Li M; Zhang J; Bao H; Li B; Zhang H; Cui L Front Pharmacol; 2022; 13():1029986. PubMed ID: 36313308 [TBL] [Abstract][Full Text] [Related]
2. Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. Yang W; Guo W; Le W; Lv G; Zhang F; Shi L; Wang X; Wang J; Wang S; Chang J; Zhang B ACS Nano; 2016 Nov; 10(11):10245-10257. PubMed ID: 27791364 [TBL] [Abstract][Full Text] [Related]
3. [Photothermal effect of nano-copper sulfide against tongue squamous cell carcinoma]. Chen D; Chen Z; Wang Z; Yang Y; Jiang Y; Hu C Nan Fang Yi Ke Da Xue Xue Bao; 2021 Dec; 41(12):1843-1849. PubMed ID: 35012917 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the therapeutic efficacy of radiolabeled BSA@CuS nanoparticle-induced radio-photothermal therapy against anaplastic thyroid cancer. Zhang C; Chai J; Jia Q; Tan J; Meng Z; Li N; Yuan M IUBMB Life; 2022 May; 74(5):433-445. PubMed ID: 35112451 [TBL] [Abstract][Full Text] [Related]
5. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Zhang C; Fu YY; Zhang X; Yu C; Zhao Y; Sun SK Dalton Trans; 2015 Aug; 44(29):13112-8. PubMed ID: 26106950 [TBL] [Abstract][Full Text] [Related]
6. CuS@BSA-NB2 Nanoparticles for HER2-Targeted Photothermal Therapy. Ying M; Li Q; Wu J; Jiang Y; Xu Z; Ma M; Xu G Front Pharmacol; 2021; 12():779591. PubMed ID: 35126119 [TBL] [Abstract][Full Text] [Related]
7. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287 [TBL] [Abstract][Full Text] [Related]
8. Thermosensitive drug-loading system based on copper sulfide nanoparticles for combined photothermal therapy and chemotherapy in vivo. Yuan Z; Qu S; He Y; Xu Y; Liang L; Zhou X; Gui L; Gu Y; Chen H Biomater Sci; 2018 Nov; 6(12):3219-3230. PubMed ID: 30255863 [TBL] [Abstract][Full Text] [Related]
9. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma. Ji B; Cai H; Yang Y; Peng F; Song M; Sun K; Yan F; Liu Y Acta Biomater; 2020 Jul; 111():363-372. PubMed ID: 32434082 [TBL] [Abstract][Full Text] [Related]
10. Ultrasmall hybrid protein-copper sulfide nanoparticles for targeted photoacoustic imaging of orthotopic hepatocellular carcinoma with a high signal-to-noise ratio. Yan H; Chen J; Li Y; Bai Y; Wu Y; Sheng Z; Song L; Liu C; Zhang H Biomater Sci; 2018 Dec; 7(1):92-103. PubMed ID: 30358774 [TBL] [Abstract][Full Text] [Related]
11. The Ultrasmall Biocompatible CuS@BSA Nanoparticle and Its Photothermal Effects. Wan X; Liu M; Ma M; Chen D; Wu N; Li L; Li Z; Lin G; Wang X; Xu G Front Pharmacol; 2019; 10():141. PubMed ID: 30863310 [TBL] [Abstract][Full Text] [Related]
12. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma. Cai H; Dai X; Guo X; Zhang L; Cao K; Yan F; Ji B; Liu Y Acta Biomater; 2021 Jun; 127():276-286. PubMed ID: 33812073 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Antibacterial Activity of CuS-BSA/Lysozyme under Near Infrared Light Irradiation. Swaidan A; Ghayyem S; Barras A; Addad A; Szunerits S; Boukherroub R Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578471 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Liu X; Li B; Fu F; Xu K; Zou R; Wang Q; Zhang B; Chen Z; Hu J Dalton Trans; 2014 Aug; 43(30):11709-15. PubMed ID: 24950757 [TBL] [Abstract][Full Text] [Related]
15. Transdermal Photothermal Sterilization and Abscess Elimination Research of BSA-CuS Nanoparticles in vivo. Zhao Y; Zhao JJ; Guo JX; Liu SQ; Li Y; Wang XY; Li R; Tang HQ; Li ZY; Yang HF; Chen B ChemMedChem; 2022 Feb; 17(3):e202100570. PubMed ID: 34719851 [TBL] [Abstract][Full Text] [Related]
16. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. Huang J; Zhou J; Zhuang J; Gao H; Huang D; Wang L; Wu W; Li Q; Yang DP; Han MY ACS Appl Mater Interfaces; 2017 Oct; 9(42):36606-36614. PubMed ID: 28976189 [TBL] [Abstract][Full Text] [Related]
17. Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy. Huang X; Xu C; Li Y; Cheng H; Wang X; Sun R Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():129-137. PubMed ID: 30606518 [TBL] [Abstract][Full Text] [Related]
18. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal-chemodynamic synergistic antitumor therapy. Qin Z; Qiu M; Zhang Q; Yang S; Liao G; Xiong Z; Xu Z J Mater Chem B; 2021 Nov; 9(42):8882-8896. PubMed ID: 34693959 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible copper sulfide-based nanocomposites for artery interventional chemo-photothermal therapy of orthotropic hepatocellular carcinoma. Li X; Yuan HJ; Tian XM; Tang J; Liu LF; Liu FY Mater Today Bio; 2021 Sep; 12():100128. PubMed ID: 34632360 [TBL] [Abstract][Full Text] [Related]
20. Indocyanine Green-Based Theranostic Nanoplatform for NIR Fluorescence Image-Guided Chemo/Photothermal Therapy of Cervical Cancer. Ma R; Alifu N; Du Z; Chen S; Heng Y; Wang J; Zhu L; Ma C; Zhang X Int J Nanomedicine; 2021; 16():4847-4861. PubMed ID: 34305398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]