BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36313930)

  • 1. Fundamental and practical approaches for single-cell ATAC-seq analysis.
    Shi P; Nie Y; Yang J; Zhang W; Tang Z; Xu J
    aBIOTECH; 2022 Sep; 3(3):212-223. PubMed ID: 36313930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation.
    Baek S; Lee I
    Comput Struct Biotechnol J; 2020; 18():1429-1439. PubMed ID: 32637041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects.
    Lu C; Wei Y; Abbas M; Agula H; Wang E; Meng Z; Zhang R
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of computational methods for the analysis of single-cell ATAC-seq data.
    Chen H; Lareau C; Andreani T; Vinyard ME; Garcia SP; Clement K; Andrade-Navarro MA; Buenrostro JD; Pinello L
    Genome Biol; 2019 Nov; 20(1):241. PubMed ID: 31739806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample Preparation and Integrative Data Analysis of a Droplet-based Single-Cell ATAC-sequencing Using Murine Thymic Epithelial Cells.
    Ishikawa T; Ishii H; Miyao T; Horie K; Miyauchi M; Akiyama N; Akiyama T
    Bio Protoc; 2023 Jan; 13(1):e4588. PubMed ID: 36789086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients.
    Li S; Wu B; Ling Y; Guo M; Qin B; Ren X; Wang C; Yang H; Chen L; Liao Y; Liu Y; Peng X; Xu C; Wang Z; Shen Y; Chen J; Liu L; Niu B; Zhu M; Liu L; Li F; Zhu T; Zhu Z; Zhou X; Lu H
    Front Immunol; 2021; 12():625881. PubMed ID: 33717140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating network diffusion and peak location information for better single-cell ATAC-seq data analysis.
    Yu J; Leng J; Hou Z; Sun D; Wu LY
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38493346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?
    Liu Y; Zhang J; Wang S; Zeng X; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scATACpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell ATAC-seq data.
    Hu K; Liu H; Lawson ND; Zhu LJ
    Front Cell Dev Biol; 2022; 10():981859. PubMed ID: 36238687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scReadSim: a single-cell RNA-seq and ATAC-seq read simulator.
    Yan G; Song D; Li JJ
    Nat Commun; 2023 Nov; 14(1):7482. PubMed ID: 37980428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translator: A
    Xu S; Skarica M; Hwang A; Dai Y; Lee C; Girgenti MJ; Zhang J
    J Comput Biol; 2022 Jul; 29(7):619-633. PubMed ID: 35584295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J; Quan JP; Ye Y; Wu ZF; Yang J; Yang M; Zheng EQ
    Yi Chuan; 2020 Apr; 42(4):333-346. PubMed ID: 32312702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy.
    Su Q; Huang W; Huang Y; Dai R; Chang C; Li QY; Liu H; Li Z; Zhao Y; Wu Q; Pan DG
    Cardiovasc Diabetol; 2024 Apr; 23(1):139. PubMed ID: 38664790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of single-cell cross-species chromatin accessibility landscapes with combinatorial-hybridization-based ATAC-seq.
    Zhang G; Fu Y; Yang L; Ye F; Zhang P; Zhang S; Ma L; Li J; Wu H; Han X; Wang J; Guo G
    Dev Cell; 2024 Mar; 59(6):793-811.e8. PubMed ID: 38330939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destin: toolkit for single-cell analysis of chromatin accessibility.
    Urrutia E; Chen L; Zhou H; Jiang Y
    Bioinformatics; 2019 Oct; 35(19):3818-3820. PubMed ID: 30821321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of classification in single cell atac-seq data with machine learning methods.
    Guo H; Yang Z; Jiang T; Liu S; Wang Y; Cui Z
    BMC Bioinformatics; 2022 Sep; 23(Suppl 5):249. PubMed ID: 36131234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning single-cell chromatin accessibility profiles using meta-analytic marker genes.
    Kawaguchi RK; Tang Z; Fischer S; Rajesh C; Tripathy R; Koo PK; Gillis J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36549922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.