These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36314177)

  • 21. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
    Mahutga RR; Barocas VH; Alford PW
    J Mech Behav Biomed Mater; 2023 Aug; 144():105967. PubMed ID: 37329673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computationally efficient finite element evaluation of natural patellofemoral mechanics.
    Fitzpatrick CK; Baldwin MA; Rullkoetter PJ
    J Biomech Eng; 2010 Dec; 132(12):121013. PubMed ID: 21142327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fiber engagement accounts for geometry-dependent annulus fibrosus mechanics: A multiscale, Structure-Based Finite Element Study.
    Zhou M; Werbner B; O'Connell GD
    J Mech Behav Biomed Mater; 2021 Mar; 115():104292. PubMed ID: 33453608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational aspects in mechanical modeling of the articular cartilage tissue.
    Mohammadi H; Mequanint K; Herzog W
    Proc Inst Mech Eng H; 2013 Apr; 227(4):402-20. PubMed ID: 23637216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy.
    Al-Mayah A; Moseley J; Velec M; Brock K
    Phys Med Biol; 2011 Aug; 56(15):4701-13. PubMed ID: 21734336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Computationally Efficient Lower Limb Finite Element Musculoskeletal Framework Directly Driven Solely by Inertial Measurement Unit Sensors.
    Wang S; Hase K; Ota S
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34897395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement.
    Shu L; Yamamoto K; Yao J; Saraswat P; Liu Y; Mitsuishi M; Sugita N
    J Biomech; 2018 Aug; 77():146-154. PubMed ID: 30031649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systematic comparison between FEBio and PolyFEM for biomechanical systems.
    Martin L; Jain P; Ferguson Z; Gholamalizadeh T; Moshfeghifar F; Erleben K; Panozzo D; Abramowitch S; Schneider T
    Comput Methods Programs Biomed; 2024 Feb; 244():107938. PubMed ID: 38056313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation.
    Zhang J; Niebur GL; Ovaert TC
    J Biomech; 2008; 41(2):267-75. PubMed ID: 17961578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait.
    Li J
    J Mech Behav Biomed Mater; 2021 Jan; 113():104136. PubMed ID: 33053499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical characterization of porcine liver properties for computational simulation of indentation on cancerous tissue.
    Yang Y; Li K; Sommer G; Yung KL; Holzapfel GA
    Math Med Biol; 2020 Dec; 37(4):469-490. PubMed ID: 32424396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.
    Tang CY; Tsui CP; Tang YM; Wei L; Wong CT; Lam KW; Ip WY; Lu WW; Pang MY
    Biomed Mater Eng; 2014; 24(2):1469-84. PubMed ID: 24642974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the modeling of an intervertebral disc using a novel large deformation multi-shell approach.
    Demers S; Bouzid AH; Nadeau S
    J Biomech Eng; 2013 May; 135(5):51003. PubMed ID: 24231959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A general framework for application of prestrain to computational models of biological materials.
    Maas SA; Erdemir A; Halloran JP; Weiss JA
    J Mech Behav Biomed Mater; 2016 Aug; 61():499-510. PubMed ID: 27131609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A subject-specific integrative biomechanical framework of the pelvis for gait analysis.
    Ravera EP; Crespo MJ; Catalfamo Formento PA
    Proc Inst Mech Eng H; 2018 Nov; 232(11):1083-1097. PubMed ID: 30280643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: A 3D finite element modeling study.
    Katti DR; Katti KS
    J Mech Behav Biomed Mater; 2017 Dec; 76():125-134. PubMed ID: 28571747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anisotropic Material Characterization of Human Cervix Tissue Based on Indentation and Inverse Finite Element Analysis.
    Shi L; Yao W; Gan Y; Zhao LY; Eugene McKee W; Vink J; Wapner RJ; Hendon CP; Myers K
    J Biomech Eng; 2019 Sep; 141(9):0910171-09101713. PubMed ID: 31374123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.