These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36314177)
41. A review of cutting mechanics and modeling techniques for biological materials. Takabi B; Tai BL Med Eng Phys; 2017 Jul; 45():1-14. PubMed ID: 28457593 [TBL] [Abstract][Full Text] [Related]
42. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot. Mithraratne K; Ho H; Hunter PJ; Fernandez JW Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636 [TBL] [Abstract][Full Text] [Related]
43. Techniques for modeling muscle-induced forces in finite element models of skeletal structures. Grosse IR; Dumont ER; Coletta C; Tolleson A Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980 [TBL] [Abstract][Full Text] [Related]
44. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation. Suzuki R; Ito K; Lee T; Ogihara N J Mech Behav Biomed Mater; 2017 Jan; 65():753-760. PubMed ID: 27764748 [TBL] [Abstract][Full Text] [Related]
45. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method. Huang H; Tang W; Yan B; Wu B; Cao D Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914 [TBL] [Abstract][Full Text] [Related]
46. Biomechanical simulation of thorax deformation using finite element approach. Zhang G; Chen X; Ohgi J; Miura T; Nakamoto A; Matsumura C; Sugiura S; Hisada T Biomed Eng Online; 2016 Feb; 15():18. PubMed ID: 26852020 [TBL] [Abstract][Full Text] [Related]
47. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Vaughan TJ; McCarthy CT; McNamara LM J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366 [TBL] [Abstract][Full Text] [Related]
48. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes. Li P; Zhang J Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160 [TBL] [Abstract][Full Text] [Related]
49. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method. Guo H; Spilker RL J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733 [TBL] [Abstract][Full Text] [Related]
50. The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. Dhaher YY; Kwon TH; Barry M J Biomech; 2010 Dec; 43(16):3118-25. PubMed ID: 20810114 [TBL] [Abstract][Full Text] [Related]
51. Prediction of patellofemoral joint kinematics and contact through co-simulation of rigid body dynamics and nonlinear finite element analysis. Müller JH; Razu S; Erdemir A; Guess TM Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):718-733. PubMed ID: 32379505 [TBL] [Abstract][Full Text] [Related]
52. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis. Abyaneh MH; Wildman RD; Ashcroft IA; Ruiz PD J Mech Behav Biomed Mater; 2013 Nov; 27():239-48. PubMed ID: 23816808 [TBL] [Abstract][Full Text] [Related]
53. Finite element analysis of sliding distance and contact mechanics of hip implant under dynamic walking conditions. Gao Y; Jin Z; Wang L; Wang M Proc Inst Mech Eng H; 2015 Jun; 229(6):469-74. PubMed ID: 25963387 [TBL] [Abstract][Full Text] [Related]
54. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. Hamed E; Jasiuk I J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769 [TBL] [Abstract][Full Text] [Related]
55. Prediction of anisotropic behavior of nano/micro composite based on damage mechanics with cell modeling. Lee DJ; Kim YJ; Kim MK; Choi JB; Chang YS; Liu WK J Nanosci Nanotechnol; 2011 Jan; 11(1):619-23. PubMed ID: 21446510 [TBL] [Abstract][Full Text] [Related]
56. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. Miller K; Lu J J Mech Behav Biomed Mater; 2013 Nov; 27():154-66. PubMed ID: 23491073 [TBL] [Abstract][Full Text] [Related]
57. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue. Nakamura Y; Kanbara R; Ochiai KT; Tanaka Y J Prosthet Dent; 2014 Oct; 112(4):972-80. PubMed ID: 24819523 [TBL] [Abstract][Full Text] [Related]
58. Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics. De Greef D; Pires F; Dirckx JJ Hear Res; 2017 Feb; 344():195-206. PubMed ID: 27915026 [TBL] [Abstract][Full Text] [Related]
59. Maxillary posterior intrusion mechanics with mini-implant anchorage evaluated with the finite element method. Çifter M; Saraç M Am J Orthod Dentofacial Orthop; 2011 Nov; 140(5):e233-41. PubMed ID: 22051501 [TBL] [Abstract][Full Text] [Related]
60. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling. Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]