These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 363147)
1. Fumarate as terminal acceptor of phosphorylative electron transport. Kröger A Biochim Biophys Acta; 1978 Oct; 505(2):129-45. PubMed ID: 363147 [No Abstract] [Full Text] [Related]
2. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri. Kröger A; Dadák V; Klingenberg M; Diemer F Eur J Biochem; 1971 Aug; 21(3):322-33. PubMed ID: 4328123 [No Abstract] [Full Text] [Related]
3. Phorphorylative electron transport chains lacking a cytochrome bc1 complex. Kröger A; Paulsen J; Schröder I J Bioenerg Biomembr; 1986 Jun; 18(3):225-34. PubMed ID: 3015897 [TBL] [Abstract][Full Text] [Related]
4. The anaerobic oxidation of dihydroorotate by Escherichia coli K-12. Andrews S; Cox GB; Gibson F Biochim Biophys Acta; 1977 Oct; 462(1):153-60. PubMed ID: 199252 [TBL] [Abstract][Full Text] [Related]
5. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1. Maier TM; Myers CR BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692 [TBL] [Abstract][Full Text] [Related]
6. The cytochrome content of Escherichia coli grown with different terminal electron acceptors [proceedings]. Reid GA; Ingledew WJ Biochem Soc Trans; 1978; 6(6):1298-300. PubMed ID: 369918 [No Abstract] [Full Text] [Related]
7. Proton electrochemical gradients and energy-transduction processes. Ferguson SJ; Sorgato MC Annu Rev Biochem; 1982; 51():185-217. PubMed ID: 6287914 [No Abstract] [Full Text] [Related]
8. The separation of electrons and protons during electron transfer: the distinction between membrane potentials and transmembrane gradients. Williams RJ Ann N Y Acad Sci; 1974 Feb; 227():98-107. PubMed ID: 4363931 [No Abstract] [Full Text] [Related]
9. Fumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis in Escherichia coli. Jacobs NJ; Jacobs JM Biochem Biophys Res Commun; 1975 Jul; 65(1):435-41. PubMed ID: 1096891 [No Abstract] [Full Text] [Related]
10. On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium. Kröger A; Dadák V Eur J Biochem; 1969 Dec; 11(2):328-40. PubMed ID: 4311782 [No Abstract] [Full Text] [Related]
11. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation. Gibson F; Cox GB Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255 [No Abstract] [Full Text] [Related]
12. Electron transport phosphorylation coupled to fumarate reduction by H2- and Mg2+-dependent adenosine triphosphatase activity in extracts of the rumen anaerobe Vibrio succinogenes. Reddy CA; Peck HD J Bacteriol; 1978 Jun; 134(3):982-91. PubMed ID: 149114 [TBL] [Abstract][Full Text] [Related]
13. Functional anaerobic electron transport linked to the reduction of nitrate and fumarate in membranes from Escherichia coli as demonstrated by quenching of atebrin fluorescence. Haddock BA; Kendall-Tobias MW Biochem J; 1975 Dec; 152(3):655-9. PubMed ID: 776172 [TBL] [Abstract][Full Text] [Related]
14. The functioning of cytochrome b in the electron transport to furmarate in Propionibacterium freudenreichii and Propionibacterium pentosaceum. De Vries W; Aleem MI; Hemrika-Wagner A; Stouthamer AH Arch Microbiol; 1977 Apr; 112(3):271-6. PubMed ID: 871228 [TBL] [Abstract][Full Text] [Related]
15. On the interaction of photoactive bacteriochlorophyll with the primary electron acceptor in the reaction centre of Ectothiorhodospira shaposhnikovii. Kononenko AA; Lukashev EP; Rubin AB; Venediktov PS Biochim Biophys Acta; 1972 Jul; 275(1):130-3. PubMed ID: 5049016 [No Abstract] [Full Text] [Related]
16. Reduced nicotinamide adenine dinucleotide dependent reduction of fumarate coupled to membrane energization in a cytochrome deficient mutant of Escherichia coli K12. Singh AP; Bragg PD Biochim Biophys Acta; 1975 Aug; 396(2):229-41. PubMed ID: 50861 [TBL] [Abstract][Full Text] [Related]
17. Possible molecular mechanisms of the protonmotive function of cytochrome systems. Mitchell P J Theor Biol; 1976 Oct; 62(2):327-67. PubMed ID: 186667 [No Abstract] [Full Text] [Related]
18. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. Myers CR; Nealson KH J Bacteriol; 1990 Nov; 172(11):6232-8. PubMed ID: 2172208 [TBL] [Abstract][Full Text] [Related]
19. The electron transport chain of Escherichia coli grown anaerobically with fumarate as terminal electron acceptor: an electron paramagnetic resonance study. Ingledew WJ J Gen Microbiol; 1983 Jun; 129(6):1651-9. PubMed ID: 6313851 [TBL] [Abstract][Full Text] [Related]
20. The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. de Vries W; van Wijck-Kapteyn WM; Oosterhuis SK J Gen Microbiol; 1974 Mar; 81(1):69-78. PubMed ID: 4362619 [No Abstract] [Full Text] [Related] [Next] [New Search]