These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36314844)

  • 1. A Microfluidic Platform to Study Bioclogging in Porous Media.
    Kurz DL; Secchi E; Stocker R; Jimenez-Martinez J
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36314844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media.
    Thullner M; Baveye P
    Biotechnol Bioeng; 2008 Apr; 99(6):1337-51. PubMed ID: 18023059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms.
    Kurz DL; Secchi E; Carrillo FJ; Bourg IC; Stocker R; Jimenez-Martinez J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122202119. PubMed ID: 35858419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel.
    Karimifard S; Li X; Elowsky C; Li Y
    Water Res; 2021 Jan; 188():116536. PubMed ID: 33125999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach to model the spatiotemporal development of biofilm phase in porous media.
    Bozorg A; Sen A; Gates ID
    Environ Microbiol; 2011 Nov; 13(11):3010-23. PubMed ID: 21951321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics.
    Perujo N; Romaní AM; Sanchez-Vila X
    Sci Total Environ; 2019 Jun; 669():559-569. PubMed ID: 30889445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal Biofilm Heterogeneities Enhance Solute Mixing and Chemical Reactions in Porous Media.
    Markale I; Carrel M; Kurz DL; Morales VL; Holzner M; Jiménez-Martínez J
    Environ Sci Technol; 2023 May; 57(21):8065-8074. PubMed ID: 37205794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphogenesis of Biofilms in Porous Media and Control on Hydrodynamics.
    Kurz DL; Secchi E; Stocker R; Jimenez-Martinez J
    Environ Sci Technol; 2023 Apr; 57(14):5666-5677. PubMed ID: 36976631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The porous structure induced heterogeneous and localized failure of the biofilm in microfluidic channels.
    Tang Y; Tao C; Zhang Z; Liu S; Dong F; Zhang D; Zhang J; Wang X
    Water Sci Technol; 2023 Dec; 88(12):3181-3193. PubMed ID: 38154803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid transport in porous media based on differences in filter media morphology and biofilm growth in bioreactors.
    Tang P; Xu H; Zhang W; Zhu Y; Yang J; Zhou Y
    Environ Res; 2023 Feb; 219():115122. PubMed ID: 36549494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile micromodel technology to explore biofilm development in porous media flows.
    Papadopoulos C; Larue AE; Toulouze C; Mokhtari O; Lefort J; Libert E; Assémat P; Swider P; Malaquin L; Davit Y
    Lab Chip; 2024 Jan; 24(2):254-271. PubMed ID: 38059908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm development and the dynamics of preferential flow paths in porous media.
    Bottero S; Storck T; Heimovaara TJ; van Loosdrecht MC; Enzien MV; Picioreanu C
    Biofouling; 2013; 29(9):1069-86. PubMed ID: 24028574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to Constructed Wetlands.
    Samsó R; García J; Molle P; Forquet N
    J Environ Manage; 2016 Jan; 165():271-279. PubMed ID: 26454071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network.
    Aufrecht JA; Fowlkes JD; Bible AN; Morrell-Falvey J; Doktycz MJ; Retterer ST
    PLoS One; 2019; 14(6):e0218316. PubMed ID: 31246972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.
    Straub H; Eberl L; Zinn M; Rossi RM; Maniura-Weber K; Ren Q
    J Nanobiotechnology; 2020 Nov; 18(1):166. PubMed ID: 33176791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on the influence of bioclogging on permeability of saturated porous media by experiments and models].
    Yang J; Ye SJ; Wu JC
    Huan Jing Ke Xue; 2011 May; 32(5):1364-71. PubMed ID: 21780592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field.
    Thullner M; Schroth MH; Zeyer J; Kinzelbach W
    J Contam Hydrol; 2004 May; 70(1-2):37-62. PubMed ID: 15068868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic study in a meter-long reactive path reveals how the medium's structural heterogeneity shapes MICP-induced biocementation.
    Elmaloglou A; Terzis D; De Anna P; Laloui L
    Sci Rep; 2022 Nov; 12(1):19553. PubMed ID: 36379990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling.
    Carrel M; Morales VL; Dentz M; Derlon N; Morgenroth E; Holzner M
    Water Resour Res; 2018 Mar; 54(3):2183-2198. PubMed ID: 29780184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.