These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36314844)

  • 21. Bioclogging alleviation for constructed wetland based on the interaction among biofilm growth and hydrodynamics.
    Tang P; Chen L; Zhang W; Zhou Y
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):18755-18763. PubMed ID: 36219300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A porous elastic model for bacterial biofilms: application to the simulation of deformation of bacterial biofilms under microfluidic jet impingement.
    Zheng LY; Farnam DS; Homentcovschi D; Sammakia BG
    J Biomech Eng; 2012 May; 134(5):051003. PubMed ID: 22757491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools.
    Carrel M; Beltran MA; Morales VL; Derlon N; Morgenroth E; Kaufmann R; Holzner M
    PLoS One; 2017; 12(7):e0180374. PubMed ID: 28732010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical experiments for bioclogging in porous media.
    Ham YJ; Kim SB; Park SJ
    Environ Technol; 2007 Oct; 28(10):1079-89. PubMed ID: 17970514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Simplified Microbial Community Biofilms on Bacterial Retention in Porous Media under Conditions of Stormwater Biofiltration.
    Zhang Y; He Y; Sakowski EG; Preheim SP
    Microbiol Spectr; 2021 Oct; 9(2):e0110521. PubMed ID: 34704792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of permeable biofilm on micro- and macro-scale flow and transport in bioclogged pores.
    Deng W; Cardenas MB; Kirk MF; Altman SJ; Bennett PC
    Environ Sci Technol; 2013 Oct; 47(19):11092-8. PubMed ID: 23971830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time monitoring of mono- and dual-species biofilm formation and eradication using microfluidic platform.
    Tran VN; Khan F; Han W; Luluil M; Truong VG; Yun HG; Choi S; Kim YM; Shin JH; Kang HW
    Sci Rep; 2022 Jun; 12(1):9678. PubMed ID: 35690659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofilm streamer growth dynamics in various microfluidic channels.
    Zhang J; Dong F; Liu S; Zhang D; Wang X
    Can J Microbiol; 2022 May; 68(5):367-375. PubMed ID: 35100043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.
    Carrel M; Morales VL; Beltran MA; Derlon N; Kaufmann R; Morgenroth E; Holzner M
    Water Res; 2018 May; 134():280-291. PubMed ID: 29433078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling multidimensional and multispecies biofilms in porous media.
    Tang Y; Liu H
    Biotechnol Bioeng; 2017 Aug; 114(8):1679-1687. PubMed ID: 28322439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells.
    Song JL; Au KH; Huynh KT; Packman AI
    Biotechnol Bioeng; 2014 Mar; 111(3):597-607. PubMed ID: 24038055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic study of effects of flow velocity and nutrient concentration on biofilm accumulation and adhesive strength in the flowing and no-flowing microchannels.
    Liu N; Skauge T; Landa-Marbán D; Hovland B; Thorbjørnsen B; Radu FA; Vik BF; Baumann T; Bødtker G
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):855-868. PubMed ID: 30874983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluidic resistance control enables high-throughput establishment of mixed-species biofilms.
    Hansen MF; Torp AM; Madsen JS; Røder HL; Burmølle M
    Biotechniques; 2019 May; 66(5):235-239. PubMed ID: 31050304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial competition in porous environments can select against rapid biofilm growth.
    Coyte KZ; Tabuteau H; Gaffney EA; Foster KR; Durham WM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E161-E170. PubMed ID: 28007984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A web of streamers: biofilm formation in a porous microfluidic device.
    Valiei A; Kumar A; Mukherjee PP; Liu Y; Thundat T
    Lab Chip; 2012 Dec; 12(24):5133-7. PubMed ID: 23123600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.
    Bozorg A; Gates ID; Sen A
    J Microbiol Methods; 2015 Feb; 109():84-92. PubMed ID: 25479429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments.
    Scheidweiler D; Peter H; Pramateftaki P; de Anna P; Battin TJ
    ISME J; 2019 Jul; 13(7):1700-1710. PubMed ID: 30833685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
    Savorana G; Słomka J; Stocker R; Rusconi R; Secchi E
    Soft Matter; 2022 May; 18(20):3878-3890. PubMed ID: 35535650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel approach to investigate biofilm accumulation and bacterial transport in porous matrices.
    Dunsmore BC; Bass CJ; Lappin-Scott HM
    Environ Microbiol; 2004 Feb; 6(2):183-7. PubMed ID: 14756882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of microfluidic channel geometry on Bacillus subtilis biofilm formation.
    Liu S; Dong F; Zhang D; Zhang J; Wang X
    Biomed Microdevices; 2022 Jan; 24(1):11. PubMed ID: 35072796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.