BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36315339)

  • 21. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.
    Kobayashi T; Itai RN; Senoura T; Oikawa T; Ishimaru Y; Ueda M; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2016 Jul; 91(4-5):533-47. PubMed ID: 27143046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
    Yang A; Zhang WH
    Plant Cell Physiol; 2016 Jun; 57(6):1271-80. PubMed ID: 27257291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice.
    Bashir K; Nozoye T; Nagasaka S; Rasheed S; Miyauchi N; Seki M; Nakanishi H; Nishizawa NK
    J Exp Bot; 2017 Mar; 68(7):1785-1795. PubMed ID: 28369596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron uptake, translocation and regulation in rice.
    Guo MX; Zheng L; Zhao XS
    Yi Chuan; 2017 May; 39(5):388-395. PubMed ID: 28487271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).
    Wang B; Wei H; Xue Z; Zhang WH
    Ann Bot; 2017 Apr; 119(6):945-956. PubMed ID: 28065924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the Nonpathogenic Strain
    Núñez-Cano J; Romera FJ; Prieto P; García MJ; Sevillano-Caño J; Agustí-Brisach C; Pérez-Vicente R; Ramos J; Lucena C
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice.
    Kappara S; Neelamraju S; Ramanan R
    Plant Sci; 2018 Nov; 276():208-219. PubMed ID: 30348320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice.
    Lee S; An G
    Plant Cell Environ; 2009 Apr; 32(4):408-16. PubMed ID: 19183299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress.
    Gómez-Galera S; Sudhakar D; Pelacho AM; Capell T; Christou P
    Plant Physiol Biochem; 2012 Apr; 53():46-53. PubMed ID: 22316602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron biofortification of rice using different transgenic approaches.
    Masuda H; Aung MS; Nishizawa NK
    Rice (N Y); 2013 Dec; 6(1):40. PubMed ID: 24351075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds.
    Tan S; Han R; Li P; Yang G; Li S; Zhang P; Wang WB; Zhao WZ; Yin LP
    Transgenic Res; 2015 Feb; 24(1):109-22. PubMed ID: 25099285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OsSEC24, a functional SEC24-like protein in rice, improves tolerance to iron deficiency and high pH by enhancing H(+) secretion mediated by PM-H(+)-ATPase.
    Li S; Pan XX; Berry JO; Wang Y; Naren ; Ma S; Tan S; Xiao W; Zhao WZ; Sheng XY; Yin LP
    Plant Sci; 2015 Apr; 233():61-71. PubMed ID: 25711814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploiting new tools for iron bio-fortification of rice.
    Bashir K; Nozoye T; Ishimaru Y; Nakanishi H; Nishizawa NK
    Biotechnol Adv; 2013 Dec; 31(8):1624-33. PubMed ID: 23973806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms.
    Aung MS; Masuda H
    Front Plant Sci; 2020; 11():1102. PubMed ID: 32849682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization.
    Chen Z; Tang YT; Yao AJ; Cao J; Wu ZH; Peng ZR; Wang SZ; Xiao S; Baker AJM; Qiu RL
    Environ Pollut; 2017 Dec; 231(Pt 1):549-559. PubMed ID: 28843203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages.
    Zhou H; Zhu W; Yang WT; Gu JF; Gao ZX; Chen LW; Du WQ; Zhang P; Peng PQ; Liao BH
    Ecotoxicol Environ Saf; 2018 May; 152():91-97. PubMed ID: 29407786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+.
    Ishimaru Y; Suzuki M; Tsukamoto T; Suzuki K; Nakazono M; Kobayashi T; Wada Y; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant J; 2006 Feb; 45(3):335-46. PubMed ID: 16412081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Endosperm-specific expression of the ferritin gene in transgenic rice (Oryza sativa L.) results in increased iron content of milling rice].
    Liu QQ; Yao QH; Wang HM; Gu MH
    Yi Chuan Xue Bao; 2004 May; 31(5):518-24. PubMed ID: 15478615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition.
    Masuda H; Ishimaru Y; Aung MS; Kobayashi T; Kakei Y; Takahashi M; Higuchi K; Nakanishi H; Nishizawa NK
    Sci Rep; 2012; 2():543. PubMed ID: 22848789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of resveratrol, ferulic acid and iron in seeds confer iron deficiency chlorosis tolerance to a novel genetic stock of peanut (
    Singh S; Singh AL; Pal KK; Reddy KK; Gangadhara K; Dey R; Mahatma MK; Verma A; Kumar N; Patel CB; Thawait LK; Ahmed S; Navapara R; Rani K; Kona P
    Physiol Mol Biol Plants; 2023 May; 29(5):725-737. PubMed ID: 37363420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.