These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36315424)

  • 1. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels.
    Yamamoto K; Morikawa K; Imanaka H; Imamura K; Kitamori T
    Anal Chem; 2022 Nov; 94(45):15686-15694. PubMed ID: 36315424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.
    Li SJ; Wang C; Wu ZQ; Xu JJ; Xia XH; Chen HY
    Chemistry; 2010 Sep; 16(33):10186-94. PubMed ID: 20645335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic measurements for enzyme immobilization.
    Cooney MJ
    Methods Mol Biol; 2011; 679():207-25. PubMed ID: 20865399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Measurements for Enzyme Immobilization.
    Cooney MJ
    Methods Mol Biol; 2017; 1504():215-232. PubMed ID: 27770425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free Electrical Detection of Enzymatic Reactions in Nanochannels.
    Duan C; Alibakhshi MA; Kim DK; Brown CM; Craik CS; Majumdar A
    ACS Nano; 2016 Aug; 10(8):7476-84. PubMed ID: 27472431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of enzyme immobilized on the nanofluidic channel surface.
    Yamamoto K; Morikawa K; Chen C; Kitamori T
    Anal Sci; 2023 Mar; 39(3):251-255. PubMed ID: 36670328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.
    Pereira FM; Oliveira SC
    Bioprocess Biosyst Eng; 2016 Nov; 39(11):1717-27. PubMed ID: 27363415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line characterization of the activity and reaction kinetics of immobilized enzyme by high-performance frontal analysis.
    Jiang H; Zou H; Wang H; Ni J; Zhang Q; Zhang Y
    J Chromatogr A; 2000 Dec; 903(1-2):77-84. PubMed ID: 11153957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction.
    Tsukahara T; Mawatari K; Hibara A; Kitamori T
    Anal Bioanal Chem; 2008 Aug; 391(8):2745-52. PubMed ID: 18581104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and kinetic behavior of immobilized laccase from Myceliophthora thermophila in the presence of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate.
    Fernández-Fernández M; Moldes D; Domínguez A; Sanromán MÁ; Tavares AP; Rodríguez O; Macedo EA
    Biotechnol Prog; 2014; 30(4):790-6. PubMed ID: 24692305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of CIM monoliths as enzyme reactors.
    Vodopivec M; Podgornik A; Berovic M; Strancar A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Sep; 795(1):105-13. PubMed ID: 12957174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the performance of immobilized enzyme reactors with Michaelis-Menten kinetics.
    Lortie R
    J Chem Technol Biotechnol; 1994 Jun; 60(2):189-93. PubMed ID: 7764964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic constraints and features imposed by the immobilization of enzymes onto solid matrices: a key to advanced biotransformation.
    Foukis A; Stergiou PY; Filippou M; Koukouritaki M; Parapouli M; Theodorou LG; Hatziloukas E; Afendra A; Pandey A; Papamichael EM
    Indian J Exp Biol; 2014 Nov; 52(11):1045-51. PubMed ID: 25434099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of kinetic parameters for interfacial enzymatic reactions on self-assembled monolayers.
    Nayak S; Yeo WS; Mrksich M
    Langmuir; 2007 May; 23(10):5578-83. PubMed ID: 17402753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of reaction kinetics for immobilized enzymes--identification of parameters in the presence of diffusion limitation.
    Berendsen WR; Lapin A; Reuss M
    Biotechnol Prog; 2006; 22(5):1305-12. PubMed ID: 17022668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of laccase on modified silica: stabilization, thermal inactivation and kinetic behaviour in 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid.
    Tavares AP; Rodríguez O; Fernández-Fernández M; Domínguez A; Moldes D; Sanromán MA; Macedo EA
    Bioresour Technol; 2013 Mar; 131():405-12. PubMed ID: 23376197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Off-line form of the Michaelis-Menten equation for studying the reaction kinetics in a polymer microchip integrated with enzyme microreactor.
    Liu AL; Zhou T; He FY; Xu JJ; Lu Y; Chen HY; Xia XH
    Lab Chip; 2006 Jun; 6(6):811-8. PubMed ID: 16738735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic reactivity of glucose oxidase confined in nanochannels.
    Yu J; Zhang Y; Liu S
    Biosens Bioelectron; 2014 May; 55():307-12. PubMed ID: 24412427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino functionalization of carboxymethyl cellulose for efficient immobilization of urease.
    Alatawi FS; Monier M; Elsayed NH
    Int J Biol Macromol; 2018 Jul; 114():1018-1025. PubMed ID: 29581006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.