These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36315448)

  • 1. Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels.
    Ni C; Zhou Z; Zhu Z; Jiang D; Xiang N
    Anal Chem; 2022 Nov; 94(45):15639-15647. PubMed ID: 36315448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single stream inertial focusing in low aspect-ratio triangular microchannels.
    Mukherjee P; Wang X; Zhou J; Papautsky I
    Lab Chip; 2018 Dec; 19(1):147-157. PubMed ID: 30488049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamentals of inertial focusing in microchannels.
    Zhou J; Papautsky I
    Lab Chip; 2013 Mar; 13(6):1121-32. PubMed ID: 23353899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zigzag microchannel for rigid inertial separation and enrichment (Z-RISE) of cells and particles.
    Razavi Bazaz S; Mihandust A; Salomon R; Joushani HAN; Li W; A Amiri H; Mirakhorli F; Zhand S; Shrestha J; Miansari M; Thierry B; Jin D; Ebrahimi Warkiani M
    Lab Chip; 2022 Oct; 22(21):4093-4109. PubMed ID: 36102894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.
    Zhang Y; Zhang J; Tang F; Li W; Wang X
    Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single stream inertial focusing in a straight microchannel.
    Wang X; Zandi M; Ho CC; Kaval N; Papautsky I
    Lab Chip; 2015 Apr; 15(8):1812-21. PubMed ID: 25761900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
    Liu D; Chen S; Luo X
    Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral Large-Dimension Microfluidic Channel for Flow-Rate- and Particle-Size-Insensitive Focusing by the Stabilization and Acceleration of Secondary Flow.
    Shen S; Zhao L; Bai H; Zhang Y; Niu Y; Tian C; Chan H
    Anal Chem; 2024 Jan; 96(4):1750-1758. PubMed ID: 38215439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle focusing by 3D inertial microfluidics.
    Paiè P; Bragheri F; Di Carlo D; Osellame R
    Microsyst Nanoeng; 2017; 3():17027. PubMed ID: 31057868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers.
    Yin P; Zhao L; Chen Z; Jiao Z; Shi H; Hu B; Yuan S; Tian J
    Soft Matter; 2020 Mar; 16(12):3096-3105. PubMed ID: 32149313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidics in parallel channels for high-throughput applications.
    Hansson J; Karlsson JM; Haraldsson T; Brismar H; van der Wijngaart W; Russom A
    Lab Chip; 2012 Nov; 12(22):4644-50. PubMed ID: 22930164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical study of elasto-inertial focusing in straight channels.
    Raoufi MA; Mashhadian A; Niazmand H; Asadnia M; Razmjou A; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034103. PubMed ID: 31123535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.