These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 36315542)

  • 1. Rethinking Saliency Map: A Context-Aware Perturbation Method to Explain EEG-Based Deep Learning Model.
    Wang H; Zhu X; Chen T; Li C; Song L
    IEEE Trans Biomed Eng; 2023 May; 70(5):1462-1472. PubMed ID: 36315542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

  • 3. Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework.
    Chao H; Zhi H; Dong L; Liu Y
    Comput Intell Neurosci; 2018; 2018():9750904. PubMed ID: 30647727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M1M2: Deep-Learning-Based Real-Time Emotion Recognition from Neural Activity.
    Akter S; Prodhan RA; Pias TS; Eisenberg D; Fresneda Fernandez J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Saliency based Feature Fusion Model for EEG Emotion Estimation.
    Delvigne V; Facchini A; Wannous H; Dutoit T; Ris L; Vandeborre JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3170-3174. PubMed ID: 36086672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Correlation-Driven Mapping For Deep Learning application in detecting artifacts within the EEG.
    Bahador N; Erikson K; Laurila J; Koskenkari J; Ala-Kokko T; Kortelainen J
    J Neural Eng; 2020 Oct; 17(5):056018. PubMed ID: 33055380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-View Deep Learning Framework for EEG Seizure Detection.
    Yuan Y; Xun G; Jia K; Zhang A
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):83-94. PubMed ID: 30624207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Masking Impact of Intra-Artifacts in EEG on Deep Learning-Based Sleep Staging Systems: A Comparative Study.
    Zhu H; Wu Y; Shen N; Fan J; Tao L; Fu C; Yu H; Wan F; Pun SH; Chen C; Chen W
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1452-1463. PubMed ID: 35536800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embedding decomposition for artifacts removal in EEG signals.
    Yu J; Li C; Lou K; Wei C; Liu Q
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378524
    [No Abstract]   [Full Text] [Related]  

  • 10. A deep learning method for single-trial EEG classification in RSVP task based on spatiotemporal features of ERPs.
    Zang B; Lin Y; Liu Z; Gao X
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34284365
    [No Abstract]   [Full Text] [Related]  

  • 11. EEG-based image classification via a region-level stacked bi-directional deep learning framework.
    Fares A; Zhong SH; Jiang J
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 6):268. PubMed ID: 31856818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TC-Net: A Transformer Capsule Network for EEG-based emotion recognition.
    Wei Y; Liu Y; Li C; Cheng J; Song R; Chen X
    Comput Biol Med; 2023 Jan; 152():106463. PubMed ID: 36571938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of Brain States Under Anesthesia With Meta Learning Based Deep Learning Models.
    Wang Q; Liu F; Wan G; Chen Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1081-1091. PubMed ID: 35404821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach.
    Asghar MA; Khan MJ; Fawad ; Amin Y; Rizwan M; Rahman M; Badnava S; Mirjavadi SS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection.
    Hermans T; Smets L; Lemmens K; Dereymaeker A; Jansen K; Naulaers G; Zappasodi F; Van Huffel S; Comani S; De Vos M
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36791462
    [No Abstract]   [Full Text] [Related]  

  • 16. Deep learning-based EEG analysis: investigating P3 ERP components.
    Borra D; Magosso E
    J Integr Neurosci; 2021 Dec; 20(4):791-811. PubMed ID: 34997705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of artifacts in EEG by combining deep learning and histogram contour processing.
    Bahador N; Erikson K; Laurila J; Koskenkari J; Ala-Kokko T; Kortelainen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():138-141. PubMed ID: 33017949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.