These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36315910)

  • 1. Dietary iron restriction protects against vaso-occlusion and organ damage in murine sickle cell disease.
    Li H; Kazmi JS; Lee S; Zhang D; Gao X; Maryanovich M; Torres L; Verma D; Kelly L; Ginzburg YZ; Frenette PS; Manwani D
    Blood; 2023 Jan; 141(2):194-199. PubMed ID: 36315910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial VWF is critical for the pathogenesis of vaso-occlusive episode in a mouse model of sickle cell disease.
    Shi H; Shao B; Gao L; Venkatesan T; McDaniel JM; Zhou M; McGee S; Yu P; Ahamed J; Journeycake J; George JN; Xia L
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2207592119. PubMed ID: 35969769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oral ferroportin inhibitor vamifeport improves hemodynamics in a mouse model of sickle cell disease.
    Nyffenegger N; Zennadi R; Kalleda N; Flace A; Ingoglia G; Buzzi RM; Doucerain C; Buehler PW; Schaer DJ; Dürrenberger F; Manolova V
    Blood; 2022 Aug; 140(7):769-781. PubMed ID: 35714304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction.
    Nader E; Conran N; Romana M; Connes P
    Compr Physiol; 2021 Apr; 11(2):1785-1803. PubMed ID: 33792905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HO-1
    Liu Y; Jing F; Yi W; Mendelson A; Shi P; Walsh R; Friedman DF; Minniti C; Manwani D; Chou ST; Yazdanbakhsh K
    Blood; 2018 Apr; 131(14):1600-1610. PubMed ID: 29437594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patrolling monocytes scavenge endothelial-adherent sickle RBCs: a novel mechanism of inhibition of vaso-occlusion in SCD.
    Liu Y; Zhong H; Bao W; Mendelson A; An X; Shi P; Chou ST; Manwani D; Yazdanbakhsh K
    Blood; 2019 Aug; 134(7):579-590. PubMed ID: 31076443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutrophils as drivers of vascular injury in sickle cell disease.
    Torres LS; Hidalgo A
    Immunol Rev; 2023 Mar; 314(1):302-312. PubMed ID: 36251624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of placental growth factor reduces vaso-occlusive complications in murine models of sickle cell disease.
    Gu JM; Yuan S; Sim D; Abe K; Liu P; Rosenbruch M; Bringmann P; Kauser K
    Exp Hematol; 2018 Apr; 60():73-82.e3. PubMed ID: 29337222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiology of Sickle Cell Disease.
    Sundd P; Gladwin MT; Novelli EM
    Annu Rev Pathol; 2019 Jan; 14():263-292. PubMed ID: 30332562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiome in sickle cell disease: Pathophysiology and therapeutic insights.
    Gupta CL; Jaganathasamy N; Madkaikar M
    Br J Haematol; 2024 Oct; 205(4):1279-1287. PubMed ID: 39206530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cell transfusion to treat or prevent complications in sickle cell disease: an overview of Cochrane reviews.
    Fortin PM; Hopewell S; Estcourt LJ
    Cochrane Database Syst Rev; 2018 Aug; 8(8):CD012082. PubMed ID: 30067867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice.
    Arumugam PI; Mullins ES; Shanmukhappa SK; Monia BP; Loberg A; Shaw MA; Rizvi T; Wansapura J; Degen JL; Malik P
    Blood; 2015 Oct; 126(15):1844-55. PubMed ID: 26286849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of carbon monoxide and heme oxygenase in the prevention of sickle cell disease vaso-occlusive crises.
    Gomperts E; Belcher JD; Otterbein LE; Coates TD; Wood J; Skolnick BE; Levy H; Vercellotti GM
    Am J Hematol; 2017 Jun; 92(6):569-582. PubMed ID: 28378932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions.
    Jang JE; Hod EA; Spitalnik SL; Frenette PS
    J Clin Invest; 2011 Apr; 121(4):1397-401. PubMed ID: 21383500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preoperative blood transfusions for sickle cell disease.
    Estcourt LJ; Kimber C; Trivella M; Doree C; Hopewell S
    Cochrane Database Syst Rev; 2020 Jul; 7(7):CD003149. PubMed ID: 32614473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-transferrin-bound labile plasma iron and iron overload in sickle-cell disease: a comparative study between sickle-cell disease and beta-thalassemic patients.
    Koren A; Fink D; Admoni O; Tennenbaum-Rakover Y; Levin C
    Eur J Haematol; 2010 Jan; 84(1):72-8. PubMed ID: 19732137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nociceptors protect sickle cell disease mice from vaso-occlusive episodes and chronic organ damage.
    Xu C; Gulinello M; Frenette PS
    J Exp Med; 2021 Jan; 218(1):. PubMed ID: 33045060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agonistic Anti-CD40 Antibody Triggers an Acute Liver Crisis With Systemic Inflammation in Humanized Sickle Cell Disease Mice.
    Yalamanoglu A; Dubach IL; Schulthess N; Ingoglia G; Swindle DC; Humar R; Schaer DJ; Buehler PW; Irwin DC; Vallelian F
    Front Immunol; 2021; 12():627944. PubMed ID: 33763072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal pathophysiological and microbial changes in sickle cell disease: Potential targets for therapeutic intervention.
    Dutta D; Aujla A; Knoll BM; Lim SH
    Br J Haematol; 2020 Feb; 188(4):488-493. PubMed ID: 31693163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.