These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36315993)

  • 1. On the Variability in Cell and Nucleus Shapes.
    Devulapally A; Parekh V; Pazhayidam George C; Balakrishnan S
    Cells Tissues Organs; 2024; 213(2):96-107. PubMed ID: 36315993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation-based nuclear morphometry: capturing nuclear shape variation in HeLa cells.
    Rohde GK; Ribeiro AJ; Dahl KN; Murphy RF
    Cytometry A; 2008 Apr; 73(4):341-50. PubMed ID: 18163487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.
    Ong LL; Wang M; Dauwels J; Asada HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5526-9. PubMed ID: 25571246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotation Invariant Clustering of 3D Cell Nuclei Shapes
    Wagner P; Morath JP; Zychlinsky A; Muller KR; Samek W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6022-6027. PubMed ID: 31947219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours.
    Molnar C; Jermyn IH; Kato Z; Rahkama V; Östling P; Mikkonen P; Pietiäinen V; Horvath P
    Sci Rep; 2016 Aug; 6():32412. PubMed ID: 27561654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image analysis techniques. The problem of the quantitative evaluation of thechromatin ultrastructure.
    Maraldi NM; Marinelli F; Squarzoni S; Santi S; Barbieri M
    Cytotechnology; 1991 Feb; 5(Suppl 1):107-10. PubMed ID: 22358970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo.
    Heid PJ; Voss E; Soll DR
    Dev Biol; 2002 May; 245(2):329-47. PubMed ID: 11977985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection.
    Tofighi M; Guo T; Vanamala JKP; Monga V
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2047-2058. PubMed ID: 30703016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two nondimensional parameters for characterizing the nuclear morphology.
    Balakrishnan S; Raju SR; Barua A; Pradeep RP; Ananthasuresh GK
    Biophys J; 2021 Nov; 120(21):4698-4709. PubMed ID: 34624272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images.
    Hussain E; Mahanta LB; Das CR; Choudhury M; Chowdhury M
    Artif Intell Med; 2020 Jul; 107():101897. PubMed ID: 32828445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell nuclei and cytoplasm joint segmentation using the sliding band filter.
    Quelhas P; Marcuzzo M; Mendonça AM; Campilho A
    IEEE Trans Med Imaging; 2010 Aug; 29(8):1463-73. PubMed ID: 20525532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.
    Xu J; Xiang L; Liu Q; Gilmore H; Wu J; Tang J; Madabhushi A
    IEEE Trans Med Imaging; 2016 Jan; 35(1):119-30. PubMed ID: 26208307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei.
    Phillip JM; Han KS; Chen WC; Wirtz D; Wu PH
    Nat Protoc; 2021 Feb; 16(2):754-774. PubMed ID: 33424024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning -- promises for 3D nuclear imaging: a guide for biologists.
    Mougeot G; Dubos T; Chausse F; Péry E; Graumann K; Tatout C; Evans DE; Desset S
    J Cell Sci; 2022 Apr; 135(7):. PubMed ID: 35420128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WE-C-217BCD-05: A Novel Interpolation Method for the 3D Reconstruction of Cell Structures.
    Sa Y; Zhang Y; Li R; Huang Y; Zhang Y; Hu X; Feng Y
    Med Phys; 2012 Jun; 39(6Part27):3950. PubMed ID: 28519972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells.
    Tocco VJ; Li Y; Christopher KG; Matthews JH; Aggarwal V; Paschall L; Luesch H; Licht JD; Dickinson RB; Lele TP
    J Cell Physiol; 2018 Feb; 233(2):1446-1454. PubMed ID: 28542912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical uniformity of cells and nuclei in epithelial monolayers.
    Neelam S; Hayes PR; Zhang Q; Dickinson RB; Lele TP
    Sci Rep; 2016 Jan; 6():19689. PubMed ID: 26795751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of deformable objects in 3D images using Markov-Chain Monte Carlo and spherical harmonics.
    Khairy K; Reynaud E; Stelzer E
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):1075-82. PubMed ID: 18982711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.