These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36315993)

  • 21. Nuclear morphologies: their diversity and functional relevance.
    Skinner BM; Johnson EE
    Chromosoma; 2017 Mar; 126(2):195-212. PubMed ID: 27631793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joint modeling of cell and nuclear shape variation.
    Johnson GR; Buck TE; Sullivan DP; Rohde GK; Murphy RF
    Mol Biol Cell; 2015 Nov; 26(22):4046-56. PubMed ID: 26354424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-Invariant Detection of Cell Nuclei in Microscopy Images.
    Ram S; Rodriguez JJ
    IEEE Trans Med Imaging; 2016 Jul; 35(7):1753-64. PubMed ID: 26886972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shape normalization of 3D cell nuclei using elastic spherical mapping.
    Gladilin E; Goetze S; Mateos-Langerak J; VAN Driel R; Eils R; Rohr K
    J Microsc; 2008 Jul; 231(Pt 1):105-14. PubMed ID: 18638194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of Cell Nuclear Mechanics: Classes, Components, and Applications.
    Hobson CM; Stephens AD
    Cells; 2020 Jul; 9(7):. PubMed ID: 32640571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes.
    Scott KE; Fraley SI; Rangamani P
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33990464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of methods for generative modeling of cell and nuclear shape.
    Ruan X; Murphy RF
    Bioinformatics; 2019 Jul; 35(14):2475-2485. PubMed ID: 30535313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology.
    Sengupta D; Ali SN; Bhattacharya A; Mustafi J; Mukhopadhyay A; Sengupta K
    PLoS One; 2022; 17(1):e0261181. PubMed ID: 34995293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes.
    Almeida FV; Walko G; McMillan JR; McGrath JA; Wiche G; Barber AH; Connelly JT
    J Cell Sci; 2015 Dec; 128(24):4475-86. PubMed ID: 26527396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks.
    Lin G; Adiga U; Olson K; Guzowski JF; Barnes CA; Roysam B
    Cytometry A; 2003 Nov; 56(1):23-36. PubMed ID: 14566936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling stem cell nucleus mechanics using confocal microscopy.
    Kennedy Z; Newberg J; Goelzer M; Judex S; Fitzpatrick CK; Uzer G
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2361-2372. PubMed ID: 34424419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining Deep Learning with Handcrafted Features for Cell Nuclei Segmentation
    Narotamo H; Sanches JM; Silveira M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1428-1431. PubMed ID: 33018258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient automatic 3D segmentation of cell nuclei for high-content screening.
    Marzec M; PiĆ³rkowski A; Gertych A
    BMC Bioinformatics; 2022 May; 23(1):203. PubMed ID: 35641922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation and benchmarking of level set-based three forces via geometric active contours for segmentation of white blood cell nuclei shape.
    Al-Dulaimi K; Tomeo-Reyes I; Banks J; Chandran V
    Comput Biol Med; 2020 Jan; 116():103568. PubMed ID: 32001010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiscale 3D shape representation and segmentation with applications to hippocampal/caudate extraction from brain MRI.
    Gao Y; Corn B; Schifter D; Tannenbaum A
    Med Image Anal; 2012 Feb; 16(2):374-85. PubMed ID: 22119491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vesicle-like biomechanics governs important aspects of nuclear geometry in fission yeast.
    Lim H W G; Huber G; Torii Y; Hirata A; Miller J; Sazer S
    PLoS One; 2007 Sep; 2(9):e948. PubMed ID: 17895989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple computational technique to quantify nuclear shape asymmetry.
    Nikonenko AG; Bozhok YM
    Cytometry A; 2015 Apr; 87(4):309-14. PubMed ID: 25523049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational image analysis of nuclear morphology associated with various nuclear-specific aging disorders.
    Choi S; Wang W; Ribeiro AJ; Kalinowski A; Gregg SQ; Opresko PL; Niedernhofer LJ; Rohde GK; Dahl KN
    Nucleus; 2011; 2(6):570-9. PubMed ID: 22127259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections.
    Lockett SJ; Sudar D; Thompson CT; Pinkel D; Gray JW
    Cytometry; 1998 Apr; 31(4):275-86. PubMed ID: 9551603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.