These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Size-Invariant Detection of Cell Nuclei in Microscopy Images. Ram S; Rodriguez JJ IEEE Trans Med Imaging; 2016 Jul; 35(7):1753-64. PubMed ID: 26886972 [TBL] [Abstract][Full Text] [Related]
24. Shape normalization of 3D cell nuclei using elastic spherical mapping. Gladilin E; Goetze S; Mateos-Langerak J; VAN Driel R; Eils R; Rohr K J Microsc; 2008 Jul; 231(Pt 1):105-14. PubMed ID: 18638194 [TBL] [Abstract][Full Text] [Related]
25. Modeling of Cell Nuclear Mechanics: Classes, Components, and Applications. Hobson CM; Stephens AD Cells; 2020 Jul; 9(7):. PubMed ID: 32640571 [TBL] [Abstract][Full Text] [Related]
26. A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Scott KE; Fraley SI; Rangamani P Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33990464 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of methods for generative modeling of cell and nuclear shape. Ruan X; Murphy RF Bioinformatics; 2019 Jul; 35(14):2475-2485. PubMed ID: 30535313 [TBL] [Abstract][Full Text] [Related]
28. A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology. Sengupta D; Ali SN; Bhattacharya A; Mustafi J; Mukhopadhyay A; Sengupta K PLoS One; 2022; 17(1):e0261181. PubMed ID: 34995293 [TBL] [Abstract][Full Text] [Related]
30. A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Lin G; Adiga U; Olson K; Guzowski JF; Barnes CA; Roysam B Cytometry A; 2003 Nov; 56(1):23-36. PubMed ID: 14566936 [TBL] [Abstract][Full Text] [Related]
31. Modeling stem cell nucleus mechanics using confocal microscopy. Kennedy Z; Newberg J; Goelzer M; Judex S; Fitzpatrick CK; Uzer G Biomech Model Mechanobiol; 2021 Dec; 20(6):2361-2372. PubMed ID: 34424419 [TBL] [Abstract][Full Text] [Related]
32. Combining Deep Learning with Handcrafted Features for Cell Nuclei Segmentation Narotamo H; Sanches JM; Silveira M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1428-1431. PubMed ID: 33018258 [TBL] [Abstract][Full Text] [Related]
33. Efficient automatic 3D segmentation of cell nuclei for high-content screening. Marzec M; PiĆ³rkowski A; Gertych A BMC Bioinformatics; 2022 May; 23(1):203. PubMed ID: 35641922 [TBL] [Abstract][Full Text] [Related]
34. Evaluation and benchmarking of level set-based three forces via geometric active contours for segmentation of white blood cell nuclei shape. Al-Dulaimi K; Tomeo-Reyes I; Banks J; Chandran V Comput Biol Med; 2020 Jan; 116():103568. PubMed ID: 32001010 [TBL] [Abstract][Full Text] [Related]
35. Multiscale 3D shape representation and segmentation with applications to hippocampal/caudate extraction from brain MRI. Gao Y; Corn B; Schifter D; Tannenbaum A Med Image Anal; 2012 Feb; 16(2):374-85. PubMed ID: 22119491 [TBL] [Abstract][Full Text] [Related]
36. Vesicle-like biomechanics governs important aspects of nuclear geometry in fission yeast. Lim H W G; Huber G; Torii Y; Hirata A; Miller J; Sazer S PLoS One; 2007 Sep; 2(9):e948. PubMed ID: 17895989 [TBL] [Abstract][Full Text] [Related]
37. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images. Haass-Koffler CL; Naeemuddin M; Bartlett SE J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512 [TBL] [Abstract][Full Text] [Related]