These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36315993)

  • 61. Segmentation and analysis of the three-dimensional redistribution of nuclear components in human mesenchymal stem cells.
    Vermolen BJ; Garini Y; Young IT; Dirks RW; Raz V
    Cytometry A; 2008 Sep; 73(9):816-24. PubMed ID: 18642387
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advances in the computational and molecular understanding of the prostate cancer cell nucleus.
    Carleton NM; Lee G; Madabhushi A; Veltri RW
    J Cell Biochem; 2018 Sep; 119(9):7127-7142. PubMed ID: 29923622
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent advances in understanding nuclear size and shape.
    Mukherjee RN; Chen P; Levy DL
    Nucleus; 2016 Apr; 7(2):167-86. PubMed ID: 26963026
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optimized detection and segmentation of nuclei in gastric cancer images using stain normalization and blurred artifact removal.
    Martos O; Hoque MZ; Keskinarkaus A; Kemi N; Näpänkangas J; Eskuri M; Pohjanen VM; Kauppila JH; Seppänen T
    Pathol Res Pract; 2023 Aug; 248():154694. PubMed ID: 37494804
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Statistical analyses of brain surfaces using Gaussian random fields on 2-D manifolds.
    Bansal R; Staib LH; Xu D; Zhu H; Peterson BS
    IEEE Trans Med Imaging; 2007 Jan; 26(1):46-57. PubMed ID: 17243583
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Marker-controlled watershed with deep edge emphasis and optimized H-minima transform for automatic segmentation of densely cultivated 3D cell nuclei.
    Kaseva T; Omidali B; Hippeläinen E; Mäkelä T; Wilppu U; Sofiev A; Merivaara A; Yliperttula M; Savolainen S; Salli E
    BMC Bioinformatics; 2022 Jul; 23(1):289. PubMed ID: 35864453
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cells segmentation from 3-D confocal images of early zebrafish embryogenesis.
    Zanella C; Campana M; Rizzi B; Melani C; Sanguinetti G; Bourgine P; Mikula K; Peyrieras N; Sarti A
    IEEE Trans Image Process; 2010 Mar; 19(3):770-81. PubMed ID: 19955038
    [TBL] [Abstract][Full Text] [Related]  

  • 68. View-Aware Geometry-Structure Joint Learning for Single-View 3D Shape Reconstruction.
    Zhang X; Ma R; Zou C; Zhang M; Zhao X; Gao Y
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6546-6561. PubMed ID: 34156936
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A high-throughput method for unbiased quantitation and categorization of nuclear morphology†.
    Skinner BM; Rathje CC; Bacon J; Johnson EEP; Larson EL; Kopania EEK; Good JM; Yousafzai G; Affara NA; Ellis PJI
    Biol Reprod; 2019 May; 100(5):1250-1260. PubMed ID: 30753283
    [TBL] [Abstract][Full Text] [Related]  

  • 70. nPAsym: an open-source plugin for ImageJ to quantify nuclear shape asymmetry.
    Bozhok YM; Golovko O; Nikonenko AG
    Comput Methods Programs Biomed; 2020 Nov; 196():105562. PubMed ID: 32544781
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of 3D chromatin texture analysis using confocal laser scanning microscopy.
    Huisman A; Ploeger LS; Dullens HF; Poulin N; Grizzle WE; van Diest PJ
    Cell Oncol; 2005; 27(5-6):335-45. PubMed ID: 16373966
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fourier analysis of the nuclear and cytoplasmic shapes of living two-cell murine embryos.
    Mystkowska ET; Komar A; Strojny P; Rozycka M; Sawicki W
    Anal Quant Cytol Histol; 1991 Jun; 13(3):209-14. PubMed ID: 1910422
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging.
    Pathak RU; Soujanya M; Mishra RK
    Ageing Res Rev; 2021 May; 67():101264. PubMed ID: 33540043
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An enhanced loss function simplifies the deep learning model for characterizing the 3D organoid models.
    Winkelmaier G; Parvin B
    Bioinformatics; 2021 Sep; 37(18):3084-3085. PubMed ID: 33620423
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Shape of the Nucleus: It varies widely, from spherical for doubly magic nuclei to ellipsoidal and sometimes pear shapes.
    Wilets L
    Science; 1959 Feb; 129(3346):361-7. PubMed ID: 17750406
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Volume regulation and shape bifurcation in the cell nucleus.
    Kim DH; Li B; Si F; Phillip JM; Wirtz D; Sun SX
    J Cell Sci; 2015 Sep; 128(18):3375-85. PubMed ID: 26243474
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.
    Ghanta S; Jordan MI; Kose K; Brooks DH; Rajadhyaksha M; Dy JG
    IEEE Trans Image Process; 2017 Jan; 26(1):172-184. PubMed ID: 27723590
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes.
    Khoshdeli M; Winkelmaier G; Parvin B
    BMC Bioinformatics; 2018 Aug; 19(1):294. PubMed ID: 30086715
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spherical Harmonics based extraction and annotation of cell shape in 3D time-lapse microscopy sequences.
    Ducroz C; Olivo-Marin JC; Dufour A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6619-22. PubMed ID: 22255856
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multi-Pass Fast Watershed for Accurate Segmentation of Overlapping Cervical Cells.
    Tareef A; Song Y; Huang H; Feng D; Chen M; Wang Y; Cai W
    IEEE Trans Med Imaging; 2018 Sep; 37(9):2044-2059. PubMed ID: 29993863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.