BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36316338)

  • 1. Network inference from perturbation time course data.
    Sarmah D; Smith GR; Bouhaddou M; Stern AD; Erskine J; Birtwistle MR
    NPJ Syst Biol Appl; 2022 Nov; 8(1):42. PubMed ID: 36316338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological Network Inference and analysis using SEBINI and CABIN.
    Taylor R; Singhal M
    Methods Mol Biol; 2009; 541():551-76. PubMed ID: 19381531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation.
    Pinna A; Heise S; Flassig RJ; de la Fuente A; Klamt S
    BMC Syst Biol; 2013 Aug; 7():73. PubMed ID: 23924435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data.
    Kiani NA; Kaderali L
    BMC Bioinformatics; 2014 Jul; 15(1):250. PubMed ID: 25047753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy.
    Andrec M; Kholodenko BN; Levy RM; Sontag E
    J Theor Biol; 2005 Feb; 232(3):427-41. PubMed ID: 15572066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A posterior probability approach for gene regulatory network inference in genetic perturbation data.
    Young WC; Raftery AE; Yeung KY
    Math Biosci Eng; 2016 Dec; 13(6):1241-1251. PubMed ID: 27775378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse engineering gene regulatory networks by modular response analysis - a benchmark.
    Klinger B; Blüthgen N
    Essays Biochem; 2018 Oct; 62(4):535-547. PubMed ID: 30315094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Regulatory Network Inference from Perturbed Time-Series Expression Data via Ordered Dynamical Expansion of Non-Steady State Actors.
    Zamanighomi M; Zamanian M; Kimber M; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1093-1106. PubMed ID: 26701893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. bLARS: An Algorithm to Infer Gene Regulatory Networks.
    Singh N; Vidyasagar M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):301-14. PubMed ID: 27045829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of regulatory networks using expression time-series data of a genotyped population.
    Yeung KY; Dombek KM; Lo K; Mittler JE; Zhu J; Schadt EE; Bumgarner RE; Raftery AE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(48):19436-41. PubMed ID: 22084118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size.
    Guo W; Calixto CPG; Tzioutziou N; Lin P; Waugh R; Brown JWS; Zhang R
    BMC Syst Biol; 2017 Jun; 11(1):62. PubMed ID: 28629365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network inference workflow applied to virulence-related processes in Salmonella typhimurium.
    Taylor RC; Singhal M; Weller J; Khoshnevis S; Shi L; McDermott J
    Ann N Y Acad Sci; 2009 Mar; 1158():143-58. PubMed ID: 19348639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D3GRN: a data driven dynamic network construction method to infer gene regulatory networks.
    Chen X; Li M; Zheng R; Wu FX; Wang J
    BMC Genomics; 2019 Dec; 20(Suppl 13):929. PubMed ID: 31881937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the reconstruction of regulatory pathways with distinct Bayesian networks inference methods.
    Werhli AV
    BMC Genomics; 2012; 13 Suppl 5(Suppl 5):S2. PubMed ID: 23095805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.