These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36316409)

  • 1. Machine learning overcomes human bias in the discovery of self-assembling peptides.
    Batra R; Loeffler TD; Chan H; Srinivasan S; Cui H; Korendovych IV; Nanda V; Palmer LC; Solomon LA; Fry HC; Sankaranarayanan SKRS
    Nat Chem; 2022 Dec; 14(12):1427-1435. PubMed ID: 36316409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
    Frederix PW; Scott GG; Abul-Haija YM; Kalafatovic D; Pappas CG; Javid N; Hunt NT; Ulijn RV; Tuttle T
    Nat Chem; 2015 Jan; 7(1):30-7. PubMed ID: 25515887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Empowers the Discovery of Self-Assembling Peptides with Over 10 Trillion Sequences.
    Wang J; Liu Z; Zhao S; Xu T; Wang H; Li SZ; Li W
    Adv Sci (Weinh); 2023 Nov; 10(31):e2301544. PubMed ID: 37749875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of Self-Assembling π-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation.
    Shmilovich K; Mansbach RA; Sidky H; Dunne OE; Panda SS; Tovar JD; Ferguson AL
    J Phys Chem B; 2020 May; 124(19):3873-3891. PubMed ID: 32180410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition.
    Chan KH; Xue B; Robinson RC; Hauser CAE
    Sci Rep; 2017 Oct; 7(1):12897. PubMed ID: 29018249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Self-Assembling Peptide-Based Hydrogels for Regenerative Medicine Using Solid-Phase Peptide Synthesis.
    Thomas Pashuck E
    Methods Mol Biol; 2018; 1758():177-192. PubMed ID: 29679331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How can artificial intelligence be used for peptidomics?
    Perpetuo L; Klein J; Ferreira R; Guedes S; Amado F; Leite-Moreira A; Silva AMS; Thongboonkerd V; Vitorino R
    Expert Rev Proteomics; 2021 Jul; 18(7):527-556. PubMed ID: 34343059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.
    Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations reveal disruptive self-assembly in dynamic peptide libraries.
    Sasselli IR; Moreira IP; Ulijn RV; Tuttle T
    Org Biomol Chem; 2017 Aug; 15(31):6541-6547. PubMed ID: 28745772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A random forest learning assisted "divide and conquer" approach for peptide conformation search.
    Chen X; Yang B; Lin Z
    Sci Rep; 2018 Jun; 8(1):8796. PubMed ID: 29891960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-enabled discovery and design of membrane-active peptides.
    Lee EY; Wong GCL; Ferguson AL
    Bioorg Med Chem; 2018 Jun; 26(10):2708-2718. PubMed ID: 28728899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide-Nanoparticle Complex.
    Dutta S; Corni S; Brancolini G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling gelation with sequence: Towards programmable peptide hydrogels.
    Medini K; Mansel BW; Williams MAK; Brimble MA; Williams DE; Gerrard JA
    Acta Biomater; 2016 Oct; 43():30-37. PubMed ID: 27424085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.