These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36316452)

  • 1. Bacteriophage genome engineering with CRISPR-Cas13a.
    Guan J; Oromí-Bosch A; Mendoza SD; Karambelkar S; Berry JD; Bondy-Denomy J
    Nat Microbiol; 2022 Dec; 7(12):1956-1966. PubMed ID: 36316452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.
    Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC
    Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.
    Schroven K; Voet M; Lavigne R; Hendrix H
    Methods Mol Biol; 2024; 2793():113-128. PubMed ID: 38526727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring pangenomic diversity and CRISPR-Cas evasion potential in jumbo phages: a comparative genomics study.
    Magar S; Kolte V; Sharma G; Govindarajan S
    Microbiol Spectr; 2024 Oct; 12(10):e0420023. PubMed ID: 39264185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems.
    Hill CM; Hatoum-Aslan A
    Methods Mol Biol; 2024; 2734():279-299. PubMed ID: 38066376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases.
    Mendoza SD; Nieweglowska ES; Govindarajan S; Leon LM; Berry JD; Tiwari A; Chaikeeratisak V; Pogliano J; Agard DA; Bondy-Denomy J
    Nature; 2020 Jan; 577(7789):244-248. PubMed ID: 31819262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular Organization by Jumbo Bacteriophages.
    Guan J; Bondy-Denomy J
    J Bacteriol; 2020 Dec; 203(2):. PubMed ID: 32868402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing.
    Adler BA; Hessler T; Cress BF; Lahiri A; Mutalik VK; Barrangou R; Banfield J; Doudna JA
    Nat Microbiol; 2022 Dec; 7(12):1967-1979. PubMed ID: 36316451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages.
    Chaikeeratisak V; Birkholz EA; Pogliano J
    Front Microbiol; 2021; 12():641317. PubMed ID: 34326818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
    Bari SMN; Walker FC; Cater K; Aslan B; Hatoum-Aslan A
    ACS Synth Biol; 2017 Dec; 6(12):2316-2325. PubMed ID: 28885820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering.
    Choi SY; Romero-Calle DX; Cho HG; Bae HW; Cho YH
    J Microbiol; 2024 Jan; 62(1):1-10. PubMed ID: 38300409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection.
    Mayo-Muñoz D; Smith LM; Garcia-Doval C; Malone LM; Harding KR; Jackson SA; Hampton HG; Fagerlund RD; Gumy LF; Fineran PC
    Mol Cell; 2022 Dec; 82(23):4471-4486.e9. PubMed ID: 36395770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses.
    Nguyen HM; Watanabe S; Sharmin S; Kawaguchi T; Tan XE; Wannigama DL; Cui L
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells.
    Lin P; Qin S; Pu Q; Wang Z; Wu Q; Gao P; Schettler J; Guo K; Li R; Li G; Huang C; Wei Y; Gao GF; Jiang J; Wu M
    Mol Cell; 2020 Jun; 78(5):850-861.e5. PubMed ID: 32348779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Bacteriophages as Versatile Biologics.
    Kilcher S; Loessner MJ
    Trends Microbiol; 2019 Apr; 27(4):355-367. PubMed ID: 30322741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages.
    Martel B; Moineau S
    Nucleic Acids Res; 2014 Aug; 42(14):9504-13. PubMed ID: 25063295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering.
    Liu Q; Zhang H; Huang X
    FEBS J; 2020 Feb; 287(4):626-644. PubMed ID: 31730297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.