BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36316484)

  • 1. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag.
    Meers MP; Llagas G; Janssens DH; Codomo CA; Henikoff S
    Nat Biotechnol; 2023 May; 41(5):708-716. PubMed ID: 36316484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag.
    Janssens DH; Greene JE; Wu SJ; Codomo CA; Minot SS; Furlan SN; Ahmad K; Henikoff S
    Nat Protoc; 2024 Jan; 19(1):83-112. PubMed ID: 37935964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag.
    Bartosovic M; Castelo-Branco G
    Nat Biotechnol; 2023 Jun; 41(6):794-805. PubMed ID: 36536148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial single-cell profiling of major chromatin types with MAbID.
    Lochs SJA; van der Weide RH; de Luca KL; Korthout T; van Beek RE; Kimura H; Kind J
    Nat Methods; 2024 Jan; 21(1):72-82. PubMed ID: 38049699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous profiling of multiple chromatin proteins in the same cells.
    Gopalan S; Wang Y; Harper NW; Garber M; Fazzio TG
    Mol Cell; 2021 Nov; 81(22):4736-4746.e5. PubMed ID: 34637755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cut&tag: a powerful epigenetic tool for chromatin profiling.
    Fu Z; Jiang S; Sun Y; Zheng S; Zong L; Li P
    Epigenetics; 2024 Dec; 19(1):2293411. PubMed ID: 38105608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity.
    Cheung K; Barter MJ; Falk J; Proctor CJ; Reynard LN; Young DA
    FASEB J; 2020 Apr; 34(4):5317-5331. PubMed ID: 32058623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multiplexed System for Quantitative Comparisons of Chromatin Landscapes.
    van Galen P; Viny AD; Ram O; Ryan RJ; Cotton MJ; Donohue L; Sievers C; Drier Y; Liau BB; Gillespie SM; Carroll KM; Cross MB; Levine RL; Bernstein BE
    Mol Cell; 2016 Jan; 61(1):170-80. PubMed ID: 26687680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive analysis of single-cell epigenomic landscapes with ChromSCape.
    Prompsy P; Kirchmeier P; Marsolier J; Deloger M; Servant N; Vallot C
    Nat Commun; 2020 Nov; 11(1):5702. PubMed ID: 33177523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis.
    Zeller P; Yeung J; Viñas Gaza H; de Barbanson BA; Bhardwaj V; Florescu M; van der Linden R; van Oudenaarden A
    Nat Genet; 2023 Feb; 55(2):333-345. PubMed ID: 36539617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrogation of allelic chromatin states in human cells by high-density ChIP-genotyping.
    Light N; Adoue V; Ge B; Chen SH; Kwan T; Pastinen T
    Epigenetics; 2014 Sep; 9(9):1238-51. PubMed ID: 25055051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell profiling of transcriptome and histone modifications with EpiDamID.
    Rang FJ; de Luca KL; de Vries SS; Valdes-Quezada C; Boele E; Nguyen PD; Guerreiro I; Sato Y; Kimura H; Bakkers J; Kind J
    Mol Cell; 2022 May; 82(10):1956-1970.e14. PubMed ID: 35366395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance.
    Baker K; Dhillon T; Colas I; Cook N; Milne I; Milne L; Bayer M; Flavell AJ
    Plant J; 2015 Oct; 84(1):111-24. PubMed ID: 26255869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro.
    Zhang B; Srivastava A; Mimitou E; Stuart T; Raimondi I; Hao Y; Smibert P; Satija R
    Nat Biotechnol; 2022 Aug; 40(8):1220-1230. PubMed ID: 35332340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of histone modifications in epigenetic transitions during normal and perturbed development.
    Kubicek S; Schotta G; Lachner M; Sengupta R; Kohlmaier A; Perez-Burgos L; Linderson Y; Martens JH; O'Sullivan RJ; Fodor BD; Yonezawa M; Peters AH; Jenuwein T
    Ernst Schering Res Found Workshop; 2006; (57):1-27. PubMed ID: 16568946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin.
    Borg M; Jacob Y; Susaki D; LeBlanc C; Buendía D; Axelsson E; Kawashima T; Voigt P; Boavida L; Becker J; Higashiyama T; Martienssen R; Berger F
    Nat Cell Biol; 2020 Jun; 22(6):621-629. PubMed ID: 32393884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures.
    Girgis HZ; Velasco A; Reyes ZE
    BMC Bioinformatics; 2018 Sep; 19(1):310. PubMed ID: 30176808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The patterns of histone modifications in the vicinity of transcription factor binding sites in human lymphoblastoid cell lines.
    Nie Y; Liu H; Sun X
    PLoS One; 2013; 8(3):e60002. PubMed ID: 23527292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CUT&Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in single cells.
    Janssens DH; Otto DJ; Meers MP; Setty M; Ahmad K; Henikoff S
    Genome Biol; 2022 Mar; 23(1):81. PubMed ID: 35300717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.