These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36316650)

  • 1. New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection.
    Labroo MR; Rutkoski JE
    BMC Genomics; 2022 Oct; 23(1):736. PubMed ID: 36316650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedigree relationships to control inbreeding in optimum-contribution selection realise more genetic gain than genomic relationships.
    Henryon M; Liu H; Berg P; Su G; Nielsen HM; Gebregiwergis GT; Sørensen AC
    Genet Sel Evol; 2019 Jul; 51(1):39. PubMed ID: 31286868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-selection against a lethal recessive allele in breeding schemes with optimum-contribution selection or truncation selection.
    Hjortø L; Henryon M; Liu H; Berg P; Thomasen JR; Sørensen AC
    Genet Sel Evol; 2021 Sep; 53(1):75. PubMed ID: 34551728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme.
    Tribout T; Larzul C; Phocas F
    Genet Sel Evol; 2013 Oct; 45(1):40. PubMed ID: 24127883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
    Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC
    J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs.
    He J; Wu XL; Zeng Q; Li H; Ma H; Jiang J; Rosa GJM; Gianola D; Tait RG; Bauck S
    PLoS One; 2020; 15(8):e0236629. PubMed ID: 32797113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic selection requires genomic control of inbreeding.
    Sonesson AK; Woolliams JA; Meuwissen TH
    Genet Sel Evol; 2012 Aug; 44(1):27. PubMed ID: 22898324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic selection in dairy cattle simulated populations.
    Seno LO; Guidolin DGF; Aspilcueta-Borquis RR; Nascimento GBD; Silva TBRD; Oliveira HN; Munari DP
    J Dairy Res; 2018 May; 85(2):125-132. PubMed ID: 29785919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mating strategies with genomic information reduce rates of inbreeding in animal breeding schemes without compromising genetic gain.
    Liu H; Henryon M; Sørensen AC
    Animal; 2017 Apr; 11(4):547-555. PubMed ID: 27531662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures.
    Bastiaansen JW; Coster A; Calus MP; van Arendonk JA; Bovenhuis H
    Genet Sel Evol; 2012 Jan; 44(1):3. PubMed ID: 22273519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-random mating for selection with restricted rates of inbreeding and overlapping generations.
    Sonesson AK; Meuwissen TH
    Genet Sel Evol; 2002; 34(1):23-39. PubMed ID: 11929623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving Beyond Managing Realized Genomic Relationship in Long-Term Genomic Selection.
    De Beukelaer H; Badke Y; Fack V; De Meyer G
    Genetics; 2017 Jun; 206(2):1127-1138. PubMed ID: 28381589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values.
    Lillehammer M; Meuwissen TH; Sonesson AK
    Genet Sel Evol; 2013 Oct; 45(1):39. PubMed ID: 24127852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing the response of selection with a predefined rate of inbreeding: overlapping generations.
    Meuwissen TH; Sonesson AK
    J Anim Sci; 1998 Oct; 76(10):2575-83. PubMed ID: 9814896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of genomic information on optimal contribution selection in livestock breeding programs.
    Clark SA; Kinghorn BP; Hickey JM; van der Werf JH
    Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection on Expected Maximum Haploid Breeding Values Can Increase Genetic Gain in Recurrent Genomic Selection.
    Müller D; Schopp P; Melchinger AE
    G3 (Bethesda); 2018 Mar; 8(4):1173-1181. PubMed ID: 29434032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mating structures for genomic selection breeding programs in aquaculture.
    Sonesson AK; Ødegård J
    Genet Sel Evol; 2016 Jun; 48(1):46. PubMed ID: 27342705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.