These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36316650)

  • 21. Breeding schemes with optimum-contribution selection or truncation selection for beef cattle destined for use on dairy females.
    Hjortø L; Andersen T; Kargo M; Sørensen AC
    J Dairy Sci; 2022 May; 105(5):4314-4323. PubMed ID: 35307183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs.
    Gonen S; Jenko J; Gorjanc G; Mileham AJ; Whitelaw CB; Hickey JM
    Genet Sel Evol; 2017 Jan; 49(1):3. PubMed ID: 28093068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preservation of Genetic Variation in a Breeding Population for Long-Term Genetic Gain.
    Vanavermaete D; Fostier J; Maenhout S; De Baets B
    G3 (Bethesda); 2020 Aug; 10(8):2753-2762. PubMed ID: 32513654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Most of the benefits from genomic selection can be realized by genotyping a small proportion of available selection candidates.
    Henryon M; Berg P; Ostersen T; Nielsen B; Sørensen AC
    J Anim Sci; 2012 Dec; 90(13):4681-9. PubMed ID: 23087087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm.
    Cros D; Denis M; Bouvet JM; Sánchez L
    BMC Genomics; 2015 Aug; 16(1):651. PubMed ID: 26318484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting rates of inbreeding for livestock improvement schemes.
    Bijma P; Van Arendonk JA; Woolliams JA
    J Anim Sci; 2001 Apr; 79(4):840-53. PubMed ID: 11325188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection.
    Gorjanc G; Gaynor RC; Hickey JM
    Theor Appl Genet; 2018 Sep; 131(9):1953-1966. PubMed ID: 29876589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic selection for two traits in a maternal pig breeding scheme.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2013 Jul; 91(7):3079-87. PubMed ID: 23658351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of genotyping strategies on long-term genetic response in genomic selection.
    Nishio M; Satoh M
    Anim Sci J; 2014 May; 85(5):511-6. PubMed ID: 24506177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maximizing genetic gain over multiple generations with quantitative trait locus selection and control of inbreeding.
    Villanueva B; Dekkers JC; Woolliams JA; Settar P
    J Anim Sci; 2004 May; 82(5):1305-14. PubMed ID: 15144069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of number of training generations on genomic prediction for various traits in a layer chicken population.
    Weng Z; Wolc A; Shen X; Fernando RL; Dekkers JC; Arango J; Settar P; Fulton JE; O'Sullivan NP; Garrick DJ
    Genet Sel Evol; 2016 Mar; 48():22. PubMed ID: 26992471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection.
    Müller D; Schopp P; Melchinger AE
    G3 (Bethesda); 2017 Mar; 7(3):801-811. PubMed ID: 28064189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Most of the long-term genetic gain from optimum-contribution selection can be realised with restrictions imposed during optimisation.
    Henryon M; Ostersen T; Ask B; Sørensen AC; Berg P
    Genet Sel Evol; 2015 Mar; 47(1):21. PubMed ID: 25887703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of genetic gain from quadratic optimisation with constrained rates of inbreeding.
    Villanueva B; Avendaño S; Woolliams JA
    Genet Sel Evol; 2006; 38(2):127-46. PubMed ID: 16492371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upweighting rare favourable alleles increases long-term genetic gain in genomic selection programs.
    Liu H; Meuwissen TH; Sørensen AC; Berg P
    Genet Sel Evol; 2015 Mar; 47(1):19. PubMed ID: 25886296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using recent versus complete pedigree data in genetic evaluation of a closed nucleus broiler line.
    Mehrabani-Yeganeh H; Gibson JP; Schaeffer LR
    Poult Sci; 1999 Jul; 78(7):937-41. PubMed ID: 10404672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic contributions and their optimization.
    Woolliams JA; Berg P; Dagnachew BS; Meuwissen TH
    J Anim Breed Genet; 2015 Apr; 132(2):89-99. PubMed ID: 25823835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allele frequency changes due to hitch-hiking in genomic selection programs.
    Liu H; Sørensen AC; Meuwissen TH; Berg P
    Genet Sel Evol; 2014 Feb; 46(1):8. PubMed ID: 24495634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic selection strategies for clonally propagated crops.
    Werner CR; Gaynor RC; Sargent DJ; Lillo A; Gorjanc G; Hickey JM
    Theor Appl Genet; 2023 Mar; 136(4):74. PubMed ID: 36952013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.