BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36316814)

  • 1. (Epi)genomic adaptation driven by fine geographical scale environmental heterogeneity after recent biological invasions.
    Chen Y; Ni P; Fu R; Murphy KJ; Wyeth RC; Bishop CD; Huang X; Li S; Zhan A
    Ecol Appl; 2024 Jan; 34(1):e2772. PubMed ID: 36316814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylation divergence of invasive
    Ni P; Li S; Lin Y; Xiong W; Huang X; Zhan A
    Ecol Evol; 2018 Oct; 8(20):10272-10287. PubMed ID: 30397465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary genomic and epigenomic adaptation to environmental heterogeneity.
    Gao Y; Chen Y; Li S; Huang X; Hu J; Bock DG; MacIsaac HJ; Zhan A
    Mol Ecol; 2022 Jul; 31(13):3598-3612. PubMed ID: 35560847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid response to changing environments during biological invasions: DNA methylation perspectives.
    Huang X; Li S; Ni P; Gao Y; Jiang B; Zhou Z; Zhan A
    Mol Ecol; 2017 Dec; 26(23):6621-6633. PubMed ID: 29057612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid microevolution during recent range expansion to harsh environments.
    Chen Y; Shenkar N; Ni P; Lin Y; Li S; Zhan A
    BMC Evol Biol; 2018 Dec; 18(1):187. PubMed ID: 30526493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local environment-driven adaptive evolution in a marine invasive ascidian (
    Chen Y; Gao Y; Huang X; Li S; Zhan A
    Ecol Evol; 2021 May; 11(9):4252-4266. PubMed ID: 33976808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population transcriptomic sequencing reveals allopatric divergence and local adaptation in Pseudotaxus chienii (Taxaceae).
    Liu L; Wang Z; Su Y; Wang T
    BMC Genomics; 2021 May; 22(1):388. PubMed ID: 34039278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas.
    Kronholm I; Bassett A; Baulcombe D; Collins S
    Mol Biol Evol; 2017 Sep; 34(9):2285-2306. PubMed ID: 28535256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments.
    Shen Y; Xia H; Tu Z; Zong Y; Yang L; Li H
    Mol Ecol; 2022 Feb; 31(3):916-933. PubMed ID: 34773328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica.
    Pluess AR; Frank A; Heiri C; Lalagüe H; Vendramin GG; Oddou-Muratorio S
    New Phytol; 2016 Apr; 210(2):589-601. PubMed ID: 26777878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands.
    Richter-Boix A; Quintela M; Kierczak M; Franch M; Laurila A
    Mol Ecol; 2013 Mar; 22(5):1322-40. PubMed ID: 23294180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic variation contributes to environmental adaptation of Arabidopsis thaliana.
    Kooke R; Keurentjes JJ
    Plant Signal Behav; 2015; 10(9):e1057368. PubMed ID: 26237693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic insights into adaptation to heterogeneous environments for the ancient relictual Circaeaster agrestis (Circaeasteraceae, Ranunculales).
    Zhang X; Sun Y; Landis JB; Zhang J; Yang L; Lin N; Zhang H; Guo R; Li L; Zhang Y; Deng T; Sun H; Wang H
    New Phytol; 2020 Oct; 228(1):285-301. PubMed ID: 32426908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signatures of polygenic adaptation align with genome-wide methylation patterns in wild strawberry plants.
    De Kort H; Toivainen T; Van Nieuwerburgh F; Andrés J; Hytönen TP; Honnay O
    New Phytol; 2022 Aug; 235(4):1501-1514. PubMed ID: 35575945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landscape genomics in Atlantic salmon (Salmo salar): searching for gene-environment interactions driving local adaptation.
    Vincent B; Dionne M; Kent MP; Lien S; Bernatchez L
    Evolution; 2013 Dec; 67(12):3469-87. PubMed ID: 24299401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting environmental adaptation in the monocot model Brachypodium distachyon: a multi-faceted approach.
    Dell'Acqua M; Zuccolo A; Tuna M; Gianfranceschi L; Pè ME
    BMC Genomics; 2014 Sep; 15():801. PubMed ID: 25236859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence.
    Herrera CM; Medrano M; Bazaga P
    Am J Bot; 2017 Aug; 104(8):1195-1204. PubMed ID: 28814406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales.
    Gugger PF; Fitz-Gibbon ST; Albarrán-Lara A; Wright JW; Sork VL
    Mol Ecol; 2021 Jan; 30(2):406-423. PubMed ID: 33179370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.
    Fumagalli M; Sironi M; Pozzoli U; Ferrer-Admetlla A; Pattini L; Nielsen R
    PLoS Genet; 2011 Nov; 7(11):e1002355. PubMed ID: 22072984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change.
    Sun PW; Chang JT; Luo MX; Liao PC
    BMC Plant Biol; 2024 Apr; 24(1):279. PubMed ID: 38609850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.