BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3631688)

  • 21. The role of antibody in protection against African swine fever virus.
    Wardley RC; Norley SG; Wilkinson PJ; Williams S
    Vet Immunol Immunopathol; 1985 Jul; 9(3):201-12. PubMed ID: 4035978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence.
    Neilan JG; Lu Z; Kutish GF; Zsak L; Burrage TG; Borca MV; Carrillo C; Rock DL
    Virology; 1997 Apr; 230(2):252-64. PubMed ID: 9143281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibody-mediated neutralization of African swine fever virus: myths and facts.
    Escribano JM; Galindo I; Alonso C
    Virus Res; 2013 Apr; 173(1):101-9. PubMed ID: 23159730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytokine mRNA expression and pathological findings in pigs inoculated with African swine fever virus (E-70) deleted on A238L.
    Salguero FJ; Gil S; Revilla Y; Gallardo C; Arias M; Martins C
    Vet Immunol Immunopathol; 2008 Jul; 124(1-2):107-19. PubMed ID: 18384883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytopathogenic effect of African swine fever virus for pig monocytes: characterization and use in microassay.
    Knudsen RC; Genovesi EV; Whyard TC; Wool SH
    Vet Microbiol; 1987 May; 14(1):15-24. PubMed ID: 3307125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of protective immunity in swine by immunization with live attenuated recombinant pseudorabies virus expressing the capsid precursor encoding regions of foot-and-mouth disease virus.
    Li X; Liu R; Tang H; Jin M; Chen H; Qian P
    Vaccine; 2008 May; 26(22):2714-22. PubMed ID: 18436351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conserved African swine fever virus IkappaB homolog, 5EL, is nonessential for growth in vitro and virulence in domestic swine.
    Neilan JG; Lu Z; Kutish GF; Zsak L; Lewis TL; Rock DL
    Virology; 1997 Sep; 235(2):377-85. PubMed ID: 9281518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity of African swine fever virus.
    Pan IC; Hess WR
    Am J Vet Res; 1985 Feb; 46(2):314-20. PubMed ID: 2581483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro antibody-dependent enhancement assays are insensitive indicators of in vivo vaccine enhancement of equine infectious anemia virus.
    Raabe ML; Issel CJ; Montelaro RC
    Virology; 1999 Jul; 259(2):416-27. PubMed ID: 10388665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination.
    Kitikoon P; Nilubol D; Erickson BJ; Janke BH; Hoover TC; Sornsen SA; Thacker EL
    Vet Immunol Immunopathol; 2006 Aug; 112(3-4):117-28. PubMed ID: 16621020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative aspects of the transmission of African swine fever.
    McVicar JW
    Am J Vet Res; 1984 Aug; 45(8):1535-41. PubMed ID: 6476567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of porcine natural-killer cell activity with reference to African swine-fever virus infection.
    Norley SG; Wardley RC
    Immunology; 1983 Aug; 49(4):593-7. PubMed ID: 6575959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lymphocyte function and cell-mediated immunity in pigs with experimentally induced African swine fever.
    Sanchez-Vizcaino JM; Slauson DO; Ruiz-Gonzalvo F; Valero F
    Am J Vet Res; 1981 Aug; 42(8):1335-41. PubMed ID: 6975049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge.
    Ganges L; Barrera M; Núñez JI; Blanco I; Frias MT; Rodríguez F; Sobrino F
    Vaccine; 2005 May; 23(28):3741-52. PubMed ID: 15882536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRSV-neutralizing antibodies is dose dependent.
    Lopez OJ; Oliveira MF; Garcia EA; Kwon BJ; Doster A; Osorio FA
    Clin Vaccine Immunol; 2007 Mar; 14(3):269-75. PubMed ID: 17215336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus.
    Ruiz-Gonzalvo F; Rodríguez F; Escribano JM
    Virology; 1996 Apr; 218(1):285-9. PubMed ID: 8615037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence.
    Portugal R; Leitão A; Martins C
    Arch Virol; 2009; 154(9):1441-50. PubMed ID: 19657705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protection of neonatal mice against herpes simplex virus infection: probable in vivo antibody-dependent cellular cytotoxicity.
    Kohl S; Loo LS
    J Immunol; 1982 Jul; 129(1):370-6. PubMed ID: 6282968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pig major acute-phase protein and apolipoprotein A-I responses correlate with the clinical course of experimentally induced African Swine Fever and Aujeszky's disease.
    Carpintero R; Alonso C; Piñeiro M; Iturralde M; Andrés M; Le Potier MF; Madec F; Alava MA; Piñeiro A; Lampreave F
    Vet Res; 2007; 38(5):741-53. PubMed ID: 17637332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence.
    Gil S; Spagnuolo-Weaver M; Canals A; Sepúlveda N; Oliveira J; Aleixo A; Allan G; Leitão A; Martins CL
    Arch Virol; 2003 Nov; 148(11):2077-97. PubMed ID: 14579171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.