These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36317248)

  • 1. Feasibility of a
    Bangash SUK; McNeill FE; Farquharson MJ; Chettle DR
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36317248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of the use of a handheld XRF analyzer to measure skin iron to monitor iron levels in critical organs.
    Dao E; Zeller MP; Wainman BC; Farquharson MJ
    J Trace Elem Med Biol; 2018 Dec; 50():305-311. PubMed ID: 30262296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of measuring silver concentrations in vivo with x-ray fluorescence.
    Graham SA; O'Meara JM
    Phys Med Biol; 2004 Aug; 49(15):N259-66. PubMed ID: 15379029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.
    Nie LH; Sanchez S; Newton K; Grodzins L; Cleveland RO; Weisskopf MG
    Phys Med Biol; 2011 Feb; 56(3):N39-51. PubMed ID: 21242629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The feasibility of a sensitive low-dose method for the in vivo evaluation of Fe in skin using K-shell x-ray fluorescence (XRF).
    Farquharson MJ; Bradley DA
    Phys Med Biol; 1999 Apr; 44(4):955-65. PubMed ID: 10232808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of portable X-ray fluorescence (PXRF) in vivo as an alternative technique for the assessment of iron levels in patients with thalassemia and hemochromatosis.
    Estevam M; Appoloni CR
    Health Phys; 2013 Feb; 104(2):132-8. PubMed ID: 23274815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing arsenic in human toenail clippings using portable X-ray fluorescence.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    Appl Radiat Isot; 2021 Jan; 167():109491. PubMed ID: 33121893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo - Alpha and Delta models.
    Desouza ED; Gherase MR; Fleming DE; Chettle DR; O'Meara JM; McNeill FE
    Appl Radiat Isot; 2017 May; 123():82-93. PubMed ID: 28260610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging.
    Kuang Y; Pratx G; Bazalova M; Meng B; Qian J; Xing L
    IEEE Trans Med Imaging; 2013 Feb; 32(2):262-7. PubMed ID: 23076031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarised X-rays in XRF-analysis for improved in vivo detectability of cadmium in man.
    Christoffersson JO; Mattsson S
    Phys Med Biol; 1983 Oct; 28(10):1135-44. PubMed ID: 6647545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of manganese and mercury in toenail in vivo using portable X-ray fluorescence (XRF).
    Zhang X; Specht AJ; Weisskopf MG; Weuve J; Nie LH
    Biomarkers; 2018 Mar; 23(2):154-160. PubMed ID: 28901783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings.
    Fleming DE; Ware CS
    Appl Radiat Isot; 2017 Mar; 121():91-95. PubMed ID: 28040603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phantom-based feasibility study for detection of gadolinium in bone in-vivo using X-ray fluorescence.
    Lord ML; McNeill FE; Gräfe JL; Noseworthy MD; Chettle DR
    Appl Radiat Isot; 2016 Jun; 112():103-9. PubMed ID: 27019028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples.
    Clark S; Menrath W; Chen M; Roda S; Succop P
    Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable X-ray fluorescence of zinc applied to human toenail clippings.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    J Trace Elem Med Biol; 2020 Dec; 62():126603. PubMed ID: 32623095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom.
    Ren L; Wu D; Li Y; Wang G; Wu X; Liu H
    Med Phys; 2014 Mar; 41(3):031902. PubMed ID: 24593720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI.
    Mostafaei F; McNeill FE; Chettle DR; Noseworthy MD
    Physiol Meas; 2015 Jan; 36(1):N1-13. PubMed ID: 25501799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.
    Manohar N; Reynoso FJ; Cho SH
    Med Phys; 2013 Aug; 40(8):080702. PubMed ID: 23927295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.